Visual question-
answering (VQA)

MULTI-MODAL MODELS WITH HUGGING FACE

James Chapman
Curriculum Manager, DataCamp

X datacamp

Multimodal QA tasks

Image
encoder

What is the

speed limit Text
in this encoder
area?

1. Separate encoding of question text and other modality

MULTI-MODAL MODELS WITH HUGGING FACE

Multimodal QA tasks

Image Image
encoder features

What is the

speed limit Text Text
in this encoder features
area?

1. Separate encoding of question text and other modality

2. Combination of encoded features

MULTI-MODAL MODELS WITH HUGGING FACE

Multimodal QA tasks

Image Image
encoder features

Prediction

generation

What is the

speed limit Text Text
in this encoder features
area?

1. Separate encoding of question text and other modality
2. Combination of encoded features

3. Additional model layers to predict answer tokens

MULTI-MODAL MODELS WITH HUGGING FACE

VQA

import requests
from PIL import Image

url = "https://www.worldanimalprotection
.org/cdn-cgi/image/width=1920, format=
auto/globalassets/images/elephants/1
033551-elephant. jpg"

image = Image.open(requests.get(url,

stream=True) .raw)

text = "What animal 1s in this photo?"

MULTI-MODAL MODELS WITH HUGGING FACE

VQA

R

e Model knows image and text features of
many objects

e Reusable models with no extra fine-tuning

srerrrrmem Encoded image features

|

CNNSEEENS-EE_EE] Decode to text

i

MULTI-MODAL MODELS WITH HUGGING FACE

VQA

from transformers import ViltProcessor, ViltForQuestionAnswering

processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vga")
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqga")

encoding = processor(image, text, return_tensors="pt")

outputs = model(**encoding)
idx = outputs.logits.argmax(-1).item()

print("Predicted answer:", model.config.id2label[idx])

Predicted answer: elephant

MULTI-MODAL MODELS WITH HUGGING FACE

Document VQA

e Extension of VQA to detect graphs, tables, :
and text (OCR) in images

from datasets import load_dataset 500 -

from transformers import pipeline

40000 18000 | i i] | | |
35000 e ' s 16000 : [1 J_,-t‘i
32000 ! | | 1 | | 14000 | | | | A
2 I i i i | | i I i { | | | i
£ 28000 i i i i | | £ 12000 H i i | Lo
o Ll 2 Lt] LA~ |
G 24000 G 10000 el e § 3
" 20000 ! ™ s000 R N B S, A B |
| ! 1 1B 6|
| | ! i | | i ‘;V“ | | |
16000 | $ i | i 6000 I ! | ‘ | |
] i i bt i i
12000 i i ! ‘ 4000 N«»«‘;‘ I } } ! | ;
1] 1 1000 A 8000 i S]| | 1 2000 R | R | !
ataset = load_datase mms-Llab/Doc e e || e e e e
~-@ Gross income in 2011-12: ¥ 36073 Crores ~@- Non Cigarettes Segment Revenue

|| Contribution To The Exchequer =

18000
16000
14000
12000

X Crores

10000
8000

import matplotlib.pyplot as plt | ;
pLt.imshow(dataset["test"][2]["image"]) |
plt.show()

Note: includes Excise, Service Tax, VAT, Incoma Tax, Hotei

190000

170000
150000
» 130000
e
& 110000
i 90000
2000 70000
50000
30000
10000 1 | | i | i ! I i
03 04 05 06 07 08 09 10 11 12 G G2 O~ O E B R - R G R ORI =
e Market Capitalisation based on BSE closing prices mucgpe Return on Total Assets
“Computed as PBIT divided by Tota: Assets as on Balance Sheet Date
These graphs depict the standalone financial position
Source: https://www.industrydocuments.ucsf.edu/docs/rnbx0223
T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600

X datacamp MULTI-MODAL MODELS WITH HUGGING FACE

Document VQA
~ cor

<J COFFEE
lTesseract OCR HEe

e
Tesseract -

e Extra dependencies needed to run OCR

e pytesseract installed via pip

e Tesseract OCR via package installer (e.g.
apt-get , exe or homebrew / macports)

MULTI-MODAL MODELS WITH HUGGING FACE

https://tesseract-ocr.github.io/tessdoc/Installation.html

Document VQA

e LayoutLM: Trained with images and Q/As from the DocVQA dataset

from transformers import pipeline

pipe = pipeline("document-question-answering", "impira/layoutlm-document-ga")

result = pipe(
dataset["test"][2]["image"],
"What was the gross income 1n 2011-2012?"

MULTI-MODAL MODELS WITH HUGGING FACE

https://www.docvqa.org/

Document VQA

print(result)

[{'score': 0.05149758607149124,

‘answer': '3 36073 Crores', ...}]

R

40000

36000 |
32000 |.
28000 |
24000 |
20000 |
16000 |)
000] =T
8000

T Crores
T Crores

9007 | 1 1 1 1 1 1A

MULTI-MODAL MODELS WITH HUGGING FACE

Let's practice!

MULTI-MODAL MODELS WITH HUGGING FACE

Image editing with
diffusion models

MULTI-MODAL MODELS WITH HUGGING FACE

James Chapman
Curriculum Manager, DataCamp

X datacamp

Diffusers

e Trained to map noise to an image

e CLIP + Diffusion = 2 types of conditional generation
o Generation: Text - image

o Modification: Text+image = image

! https://huggingface.co/docs/diffusers

X datacamp MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing

ControlNet: image and text-guided conditional generation

annotation

—
(canny edge

detector) S——

Diffusion —b
ControlNet -

“full-body, a young female, highlights in hair, I
dancing outside a restaurant, brown eyes, wearing

jeans”

! https://stable-diffusion-art.com/controlnet/

MULTI-MODAL MODELS WITH HUGGING FACE

https://huggingface.co/docs/diffusers/main/en/using-diffusers/controlnet

Custom image editing

from diffusers.utils import load_image
image = load_image("http://301.nz/081bf")
import cv?2

from PIL import Image

import numpy as np

cv2.Canny(np.array(image), 100, 200)

image

image = imagel[:, :, Nonel

image np.concatenate([image, image, imagel],

axis=2)

MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing

from diffusers.utils import load_image
image = load_image("http://301.nz/081bf")
import cv?2

from PIL import Image

import numpy as np

cv2.Canny(np.array(image), 100, 200)

image

image = imagel[:, :, Nonel

image np.concatenate([image, image, imagel],
axis=2)

canny_image = Image.fromarray(image)

MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing

from diffusers import StableDiffusionControlNetPipeline
from diffusers import ControlNetModel
import torch

controlnet = ControlNetModel.from_pretrained("1llyasviel/sd-controlnet-canny",
torch_dtype=torch.floatl6)

pipe = StableDiffusionControlNetPipeline.from_pretrained(

"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.floatlé

pipe = pipe.to("cuda")

MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing

prompt = ["Albert Einstein,
best quality,
extremely detailed"]
generator = [
torch.Generator(device="cuda").manuval_seed(2)]

output = pipe(
prompt,
canny_image,
negative_prompt=["monochrome,
lLowres, bad anatomy,
worst quality,
low quality"],
generator=generator,
num_inference_steps=20)

X datacamp MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting
e Generate new content Jocalized to a Original image

certain region

MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting
e Generate new content /ocalized to a Original image Corresponding mask

certain region
e Binary mask: white (1), black (0)

e Masks from a segmentation or pre-defined
by user (e.g., using InpaintingMask-
Generation)

MULTI-MODAL MODELS WITH HUGGING FACE

https://github.com/Sid-047/InpaintingMask-Generation

Image inpainting
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel

controlnet = ControlNetModel.from_pretrained("1l1llyasviel/control_v1lp_sdl1l5_inpaint",
torch_dtype=torch.floatlé,
use_safetensors=True)

StableDiffusionControlNetInpaintPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
controlnet=controlnet, torch_dtype=torch.floatlé, use_safetensors=True

pipe

MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting

def make_inpaint_condition(image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

image[image_mask > 0.5] = -1.0
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)

return image

control_image = make_inpaint_condition(init_image, mask_image)

MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting

output = pipe(

"The head of the mona lisa in the
same style and quality as the original
mona lisa with a clear smile and a
slightly smaller head size",

num_inference_steps=40,

eta=1.0,

image=1init_image,

mask_image=mask_1image,

control_image=control_image,

) .images[0]

MULTI-MODAL MODELS WITH HUGGING FACE

Let's practice!

MULTI-MODAL MODELS WITH HUGGING FACE

Video generation

MULTI-MODAL MODELS WITH HUGGING FACE

O

James Chapman
Curriculum Manager, DataCamp

X datacamp

Video generation

a) Key Frame Generation b) Frame Interpolation c) Super Resolution d) Super Resolution

—p UNet
HHEEI tmterp.} I:EI.I.PET-I'ﬁ}
“Toad practicing
karate.”

Low-resolution Pixel-based Diffusion High-resolution Latent-based Diffusion

! https://link.springer.com/article/10.1007/s11263-024-02271-9

MULTI-MODAL MODELS WITH HUGGING FACE

Video generation

import torch

from diffusers import CogVideoXPipeline

pipe

pipe.
pipe.
.vae.enable_slicing()

pipe
pipe

= CogVideoXPipeline.from_pretrained(

"THUDM/CogVideoX-2b",
torch_dtype=torch.floatlé

enable_model_cpu_offload()
enable_sequential_cpu_offload()

.vae.enable_tiling()

1 https://huggingface.co/THUDM/CogVideoX-2b

MULTI-MODAL MODELS WITH HUGGING FACE

Video generation

prompt = "A majestic lion 1n a sunlit African savanna, sitting regally
on a rock formation. Golden sunlight illuminates its magnificent mane,

then a big smile appears on its face"

video = pipe(
prompt=prompt,
num_inference_steps=20,
num_frames=20,
gulidance_scale=6,
generator=torch.Generator(device="cuda") .manual_seed(42),
) .frames[0]

MULTI-MODAL MODELS WITH HUGGING FACE

Video generation

from diffusers.utils import export_to_video
from moviepy.editor import VideoFileClip

video_path = export_to_video(video,
"output.mp4",
fps=8)

video = VideoFileClip(video_path)

video.write_gif("video.gif")

MULTI-MODAL MODELS WITH HUGGING FACE

Quantitative analysis

* Prompt adherence difficult for videos

e CLIP provides a possible strategy:

CLIP Score
Prompt: A majestic
lion in a sunlit 29 ——
African savanna ...
Prompt: A majestic)
lion in a sunlit 30 —— Average: 29
African savanna ...
Prompt: A majestic
lion in a sunlit 28 ———

African savanna ...

MULTI-MODAL MODELS WITH HUGGING FACE

Quantitative analysis

from diffusers.utils import load_video

from torchmetrics.functional.multimodal import clip_score

from functools import partial

frames = load_video(video_path)

clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patchlé")

scores = []

for frame in frames:
frame_int = np.array(frame).astype("uint8")
frame_tensor = torch.from_numpy(frame_int).unsqueeze(0).permute(0, 3, 1, 2)
score = clip_score_fn(frame_tensor, [prompt]).detach()
scores.append(float(score))

avg_clip_score = round(np.mean(scores), 4)

print(f"Average CLIP score: {avg_clip_scorel}")

Average CLIP score: 30.6274

MULTI-MODAL MODELS WITH HUGGING FACE

Let's practice!

MULTI-MODAL MODELS WITH HUGGING FACE

Congratulations!

MULTI-MODAL MODELS WITH HUGGING FACE

James Chapman
Curriculum Manager, DataCamp

X datacamp

Chapter 1

TeXt Here are five ways to learn about Al...

X datacamp MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 1

Normalization Pre-Tokenize Convert to IDs Padding

101, 2079, 2017, 101, 2079, 2017,
2124, 2062, 2283, 2124, 2062, 2283,
14524,1029, 14524, 1029,

1029, 102 1029,102,0,0

[cLs, ‘do’, ‘you’,

Do you need more
do you need ‘need’, ‘more’,

éclairs? : .
more eclairs? ‘ec’, '##lal’,

‘ft#trs’, '?’, SEP]

100

125

150

175

20

0 100 200 300 4040

X datacamp MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 2

50
100
150

200

250

300

0 100 200 300 400

MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 2

MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 3

Macro Matters

Japan's economy expands annualised

2.8% in Oct-Dec
1:05 AM GMT+1 - Updated 7 min ago

MULTI-MODAL MODELS WITH HUGGING FACE

What animal is this?

An elephant

MULTI-MODAL MODELS WITH HUGGING FACE

Bye and thanks!

MULTI-MODAL MODELS WITH HUGGING FACE

Bye and thanks!

MULTI-MODAL MODELS WITH HUGGING FACE

