
Visual question-
answering (VQA)

MULT I -MODAL MODELS WITH HUGGING FACE

James Chapman
Curriculum Manager, DataCamp

MULTI-MODAL MODELS WITH HUGGING FACE

Multimodal QA tasks

1. Separate encoding of question text and other modality

MULTI-MODAL MODELS WITH HUGGING FACE

Multimodal QA tasks

1. Separate encoding of question text and other modality

2. Combination of encoded features

MULTI-MODAL MODELS WITH HUGGING FACE

Multimodal QA tasks

1. Separate encoding of question text and other modality

2. Combination of encoded features

3. Additional model layers to predict answer tokens

MULTI-MODAL MODELS WITH HUGGING FACE

VQA
import requests
from PIL import Image

url = "https://www.worldanimalprotection
.org/cdn-cgi/image/width=1920,format=
auto/globalassets/images/elephants/1
033551-elephant.jpg"

image = Image.open(requests.get(url,
stream=True).raw)

text = "What animal is in this photo?"

MULTI-MODAL MODELS WITH HUGGING FACE

VQA

Model knows image and text features of
many objects

Reusable models with no extra fine-tuning

MULTI-MODAL MODELS WITH HUGGING FACE

VQA
from transformers import ViltProcessor, ViltForQuestionAnswering

processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")

encoding = processor(image, text, return_tensors="pt")

outputs = model(**encoding)
idx = outputs.logits.argmax(-1).item()

print("Predicted answer:", model.config.id2label[idx])

Predicted answer: elephant

MULTI-MODAL MODELS WITH HUGGING FACE

Document VQA
Extension of VQA to detect graphs, tables,
and text (OCR) in images

from datasets import load_dataset
from transformers import pipeline

dataset = load_dataset("lmms-lab/DocVQA")

import matplotlib.pyplot as plt
plt.imshow(dataset["test"][2]["image"])
plt.show()

MULTI-MODAL MODELS WITH HUGGING FACE

Document VQA

Extra dependencies needed to run OCR

pytesseract installed via pip

Tesseract OCR via package installer (e.g.
apt-get , exe or homebrew / macports)

https://tesseract-ocr.github.io/tessdoc/Installation.html

MULTI-MODAL MODELS WITH HUGGING FACE

Document VQA
LayoutLM: Trained with images and Q/As from the DocVQA dataset

from transformers import pipeline
pipe = pipeline("document-question-answering", "impira/layoutlm-document-qa")

result = pipe(
 dataset["test"][2]["image"],
 "What was the gross income in 2011-2012?"
)

https://www.docvqa.org/

MULTI-MODAL MODELS WITH HUGGING FACE

Document VQA
print(result)

[{'score': 0.05149758607149124,
 'answer': '3 36073 Crores', ...}]

Let's practice!
MULT I -MODAL MODELS WITH HUGGING FACE

Image editing with
diffusion models

MULT I -MODAL MODELS WITH HUGGING FACE

James Chapman
Curriculum Manager, DataCamp

MULTI-MODAL MODELS WITH HUGGING FACE

Diffusers

Trained to map noise to an image

CLIP + Diffusion → 2 types of conditional generation
Generation: Text → image

Modification: Text+image → image

 https://huggingface.co/docs/diffusers1

MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing
ControlNet: image and text-guided conditional generation

 https://stable-diffusion-art.com/controlnet/1

https://huggingface.co/docs/diffusers/main/en/using-diffusers/controlnet

MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing
from diffusers.utils import load_image

image = load_image("http://301.nz/o81bf")

import cv2
from PIL import Image
import numpy as np

image = cv2.Canny(np.array(image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image],
 axis=2)

MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing
from diffusers.utils import load_image

image = load_image("http://301.nz/o81bf")

import cv2
from PIL import Image
import numpy as np

image = cv2.Canny(np.array(image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image],
 axis=2)
canny_image = Image.fromarray(image)

MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing
from diffusers import StableDiffusionControlNetPipeline
from diffusers import ControlNetModel
import torch

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny",
 torch_dtype=torch.float16)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
 "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)

pipe = pipe.to("cuda")

MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing
prompt = ["Albert Einstein,
 best quality,
 extremely detailed"]
generator = [
 torch.Generator(device="cuda").manual_seed(2)]

output = pipe(
 prompt,
 canny_image,
 negative_prompt=["monochrome,
 lowres, bad anatomy,
 worst quality,
 low quality"],
 generator=generator,
 num_inference_steps=20)

MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting
Generate new content localized to a
certain region

MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting
Generate new content localized to a
certain region

Binary mask: white (1), black (0)

Masks from a segmentation or pre-defined
by user (e.g., using InpaintingMask-
Generation)

https://github.com/Sid-047/InpaintingMask-Generation

MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel

controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint",
 torch_dtype=torch.float16,
 use_safetensors=True)

pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
 "stable-diffusion-v1-5/stable-diffusion-v1-5",
 controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)

MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting
def make_inpaint_condition(image, image_mask):
 image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
 image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

 image[image_mask > 0.5] = -1.0
 image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
 image = torch.from_numpy(image)
 return image

control_image = make_inpaint_condition(init_image, mask_image)

MULTI-MODAL MODELS WITH HUGGING FACE

Image inpainting
output = pipe(
 "The head of the mona lisa in the
 same style and quality as the original
 mona lisa with a clear smile and a
 slightly smaller head size",
 num_inference_steps=40,
 eta=1.0,
 image=init_image,
 mask_image=mask_image,
 control_image=control_image,
).images[0]

Let's practice!
MULT I -MODAL MODELS WITH HUGGING FACE

Video generation
MULT I -MODAL MODELS WITH HUGGING FACE

James Chapman
Curriculum Manager, DataCamp

MULTI-MODAL MODELS WITH HUGGING FACE

Video generation

 https://link.springer.com/article/10.1007/s11263-024-02271-91

MULTI-MODAL MODELS WITH HUGGING FACE

Video generation
import torch
from diffusers import CogVideoXPipeline

pipe = CogVideoXPipeline.from_pretrained(
 "THUDM/CogVideoX-2b",
 torch_dtype=torch.float16
)

pipe.enable_model_cpu_offload()
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()

 https://huggingface.co/THUDM/CogVideoX-2b1

MULTI-MODAL MODELS WITH HUGGING FACE

Video generation
prompt = "A majestic lion in a sunlit African savanna, sitting regally
on a rock formation. Golden sunlight illuminates its magnificent mane,
then a big smile appears on its face"

video = pipe(
 prompt=prompt,
 num_inference_steps=20,
 num_frames=20,
 guidance_scale=6,
 generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]

MULTI-MODAL MODELS WITH HUGGING FACE

Video generation
from diffusers.utils import export_to_video
from moviepy.editor import VideoFileClip

video_path = export_to_video(video,
 "output.mp4",
 fps=8)
video = VideoFileClip(video_path)
video.write_gif("video.gif")

MULTI-MODAL MODELS WITH HUGGING FACE

Quantitative analysis
Prompt adherence difficult for videos

CLIP provides a possible strategy:

MULTI-MODAL MODELS WITH HUGGING FACE

Quantitative analysis
from diffusers.utils import load_video
from torchmetrics.functional.multimodal import clip_score
from functools import partial
frames = load_video(video_path)
clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patch16")
scores = []
for frame in frames:
 frame_int = np.array(frame).astype("uint8")
 frame_tensor = torch.from_numpy(frame_int).unsqueeze(0).permute(0, 3, 1, 2)
 score = clip_score_fn(frame_tensor, [prompt]).detach()
 scores.append(float(score))
avg_clip_score = round(np.mean(scores), 4)
print(f"Average CLIP score: {avg_clip_score}")

Average CLIP score: 30.6274

Let's practice!
MULT I -MODAL MODELS WITH HUGGING FACE

Congratulations!
MULT I -MODAL MODELS WITH HUGGING FACE

James Chapman
Curriculum Manager, DataCamp

MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 1

MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 1

MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 2

MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 2

MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 3

MULTI-MODAL MODELS WITH HUGGING FACE

MULTI-MODAL MODELS WITH HUGGING FACE

Bye and thanks!

Bye and thanks!
MULT I -MODAL MODELS WITH HUGGING FACE

