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Multimodal QA tasks

1. Separate encoding of question text and other modality

2. Combination of encoded features

3. Additional model layers to predict answer tokens
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VQA
import requests 
from PIL import Image 

url = "https://www.worldanimalprotection 
.org/cdn-cgi/image/width=1920,format= 
auto/globalassets/images/elephants/1 
033551-elephant.jpg" 

image = Image.open(requests.get(url,  
stream=True).raw) 

 
text = "What animal is in this photo?" 
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VQA
 

Model knows image and text features of
many objects

Reusable models with no extra fine-tuning
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VQA
from transformers import ViltProcessor, ViltForQuestionAnswering 
  
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") 
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") 
  
encoding = processor(image, text, return_tensors="pt") 
  
outputs = model(**encoding) 
idx = outputs.logits.argmax(-1).item() 
  
print("Predicted answer:", model.config.id2label[idx]) 

Predicted answer: elephant 
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Document VQA
Extension of VQA to detect graphs, tables,
and text (OCR) in images

from datasets import load_dataset 
from transformers import pipeline 
 
dataset = load_dataset("lmms-lab/DocVQA") 
  
import matplotlib.pyplot as plt 
plt.imshow(dataset["test"][2]["image"]) 
plt.show() 
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Document VQA

Extra dependencies needed to run OCR

pytesseract  installed via pip

Tesseract OCR via package installer (e.g. 
apt-get , exe  or homebrew / macports )

https://tesseract-ocr.github.io/tessdoc/Installation.html
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Document VQA
LayoutLM: Trained with images and Q/As from the DocVQA dataset

from transformers import pipeline 
pipe = pipeline("document-question-answering", "impira/layoutlm-document-qa")  

result = pipe( 
    dataset["test"][2]["image"], 
    "What was the gross income in 2011-2012?" 
) 

https://www.docvqa.org/
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Document VQA
print(result) 

[{'score': 0.05149758607149124, 
  'answer': '3 36073 Crores', ...}] 



Let's practice!
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Diffusers

Trained to map noise to an image

CLIP + Diffusion → 2 types of conditional generation
Generation: Text → image

Modification: Text+image → image

 https://huggingface.co/docs/diffusers1
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Custom image editing
ControlNet: image and text-guided conditional generation

 https://stable-diffusion-art.com/controlnet/1

https://huggingface.co/docs/diffusers/main/en/using-diffusers/controlnet
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Custom image editing
from diffusers.utils import load_image 
 
image = load_image("http://301.nz/o81bf")  
 
import cv2 
from PIL import Image 
import numpy as np 
 
image = cv2.Canny(np.array(image), 100, 200)  
image = image[:, :, None] 
image = np.concatenate([image, image, image],  
                       axis=2) 
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Custom image editing
from diffusers.utils import load_image 
 
image = load_image("http://301.nz/o81bf") 
 
import cv2 
from PIL import Image 
import numpy as np 
 
image = cv2.Canny(np.array(image), 100, 200) 
image = image[:, :, None] 
image = np.concatenate([image, image, image],  
                       axis=2) 
canny_image = Image.fromarray(image) 



MULTI-MODAL MODELS WITH HUGGING FACE

Custom image editing
from diffusers import StableDiffusionControlNetPipeline 
from diffusers import ControlNetModel 
import torch 
 
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny",  
                                             torch_dtype=torch.float16) 
  
pipe = StableDiffusionControlNetPipeline.from_pretrained( 
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
) 
  
pipe = pipe.to("cuda") 
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Custom image editing
prompt = ["Albert Einstein,  
          best quality,  
          extremely detailed"]  
generator = [ 
  torch.Generator(device="cuda").manual_seed(2)] 
  
output = pipe( 
    prompt, 
    canny_image, 
    negative_prompt=["monochrome,  
                     lowres, bad anatomy,  
                     worst quality,  
                     low quality"], 
    generator=generator, 
    num_inference_steps=20) 
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Image inpainting
Generate new content localized to a
certain region
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Image inpainting
Generate new content localized to a
certain region

Binary mask: white ( 1 ), black ( 0 )

Masks from a segmentation or pre-defined
by user (e.g., using InpaintingMask-
Generation)

https://github.com/Sid-047/InpaintingMask-Generation
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Image inpainting
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel 
  
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint",  
                                             torch_dtype=torch.float16,  
                                             use_safetensors=True) 
 
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( 
    "stable-diffusion-v1-5/stable-diffusion-v1-5",  
    controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True 
) 
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Image inpainting
def make_inpaint_condition(image, image_mask): 
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 
    image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 

 
    image[image_mask > 0.5] = -1.0  
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) 
    image = torch.from_numpy(image) 
    return image 

control_image = make_inpaint_condition(init_image, mask_image) 
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Image inpainting
output = pipe( 
    "The head of the mona lisa in the  
  same style and quality as the original 
  mona lisa with a clear smile and a  
  slightly smaller head size", 
    num_inference_steps=40,  
    eta=1.0,  
    image=init_image, 
    mask_image=mask_image, 
    control_image=control_image, 
).images[0] 



Let's practice!
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Video generation

 https://link.springer.com/article/10.1007/s11263-024-02271-91
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Video generation
import torch 
from diffusers import CogVideoXPipeline 
  
pipe = CogVideoXPipeline.from_pretrained( 
    "THUDM/CogVideoX-2b", 
    torch_dtype=torch.float16 
) 
 
pipe.enable_model_cpu_offload() 
pipe.enable_sequential_cpu_offload()  
pipe.vae.enable_slicing() 
pipe.vae.enable_tiling() 

 https://huggingface.co/THUDM/CogVideoX-2b1
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Video generation
prompt = "A majestic lion in a sunlit African savanna, sitting regally  
on a rock formation. Golden sunlight illuminates its magnificent mane,  
then a big smile appears on its face" 

video = pipe( 
    prompt=prompt,  
    num_inference_steps=20,  
    num_frames=20,  
    guidance_scale=6,  
    generator=torch.Generator(device="cuda").manual_seed(42), 
).frames[0] 
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Video generation
from diffusers.utils import export_to_video 
from moviepy.editor import VideoFileClip 
  
video_path = export_to_video(video,  
                             "output.mp4",  
                             fps=8) 
video = VideoFileClip(video_path)  
video.write_gif("video.gif") 
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Quantitative analysis
Prompt adherence difficult for videos

CLIP provides a possible strategy:
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Quantitative analysis
from diffusers.utils import load_video 
from torchmetrics.functional.multimodal import clip_score 
from functools import partial  
frames = load_video(video_path) 
clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patch16")  
scores = [] 
for frame in frames: 
  frame_int = np.array(frame).astype("uint8") 
  frame_tensor = torch.from_numpy(frame_int).unsqueeze(0).permute(0, 3, 1, 2)  
  score = clip_score_fn(frame_tensor, [prompt]).detach() 
  scores.append(float(score)) 
avg_clip_score = round(np.mean(scores), 4) 
print(f"Average CLIP score: {avg_clip_score}") 

Average CLIP score: 30.6274 
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Chapter 2
 



MULTI-MODAL MODELS WITH HUGGING FACE

Chapter 3
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Bye and thanks!
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