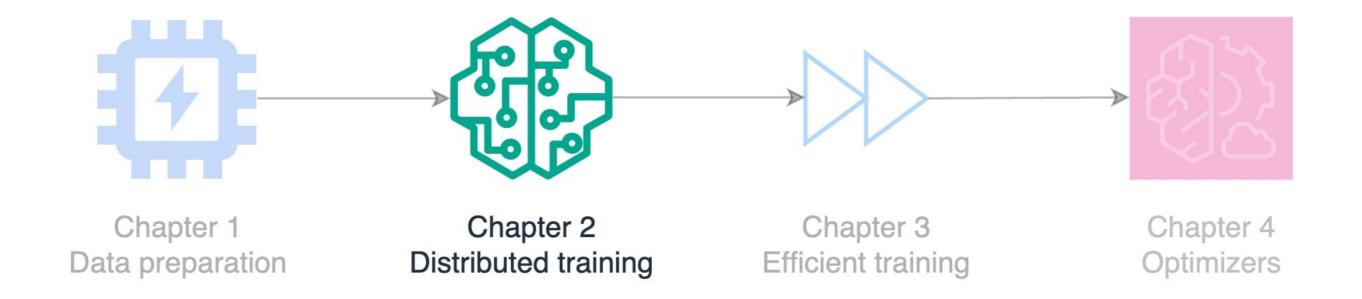
Gradient accumulation

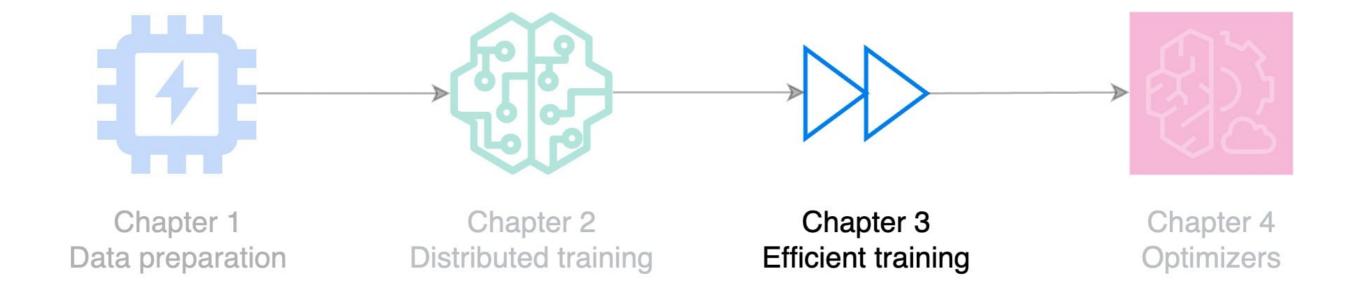
EFFICIENT AI MODEL TRAINING WITH PYTORCH

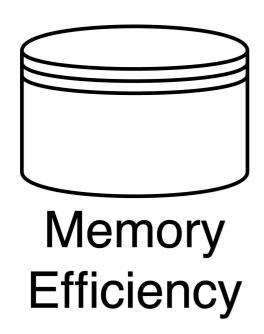
Dennis LeeData Engineer

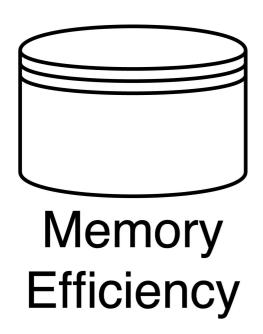
Distributed training

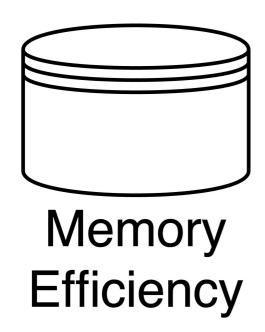


Efficient training

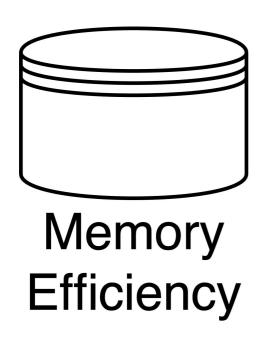






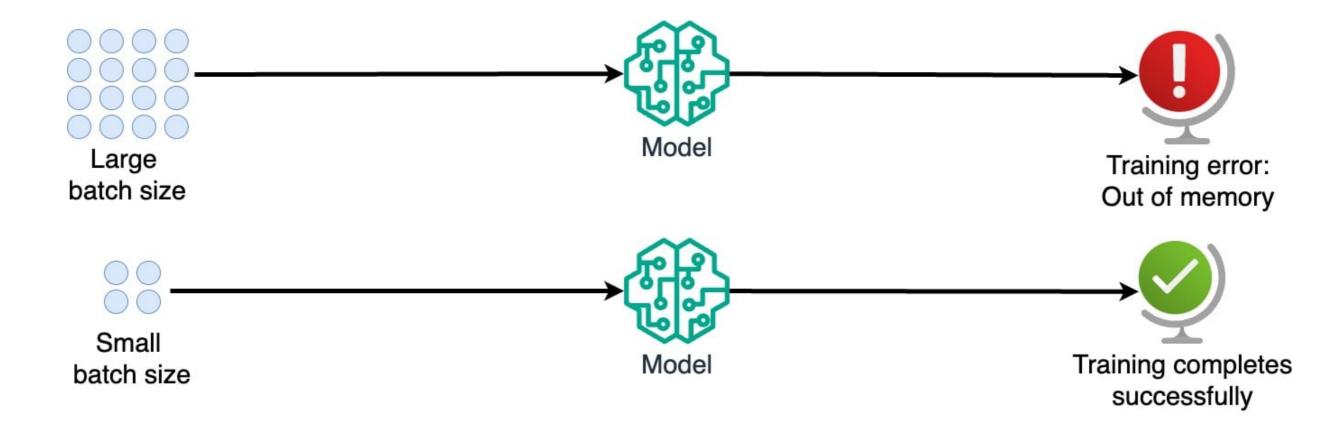


Gradient accumulation improves memory efficiency

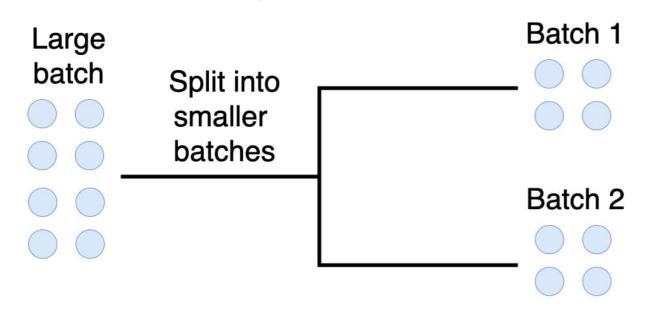


The problem with large batch sizes

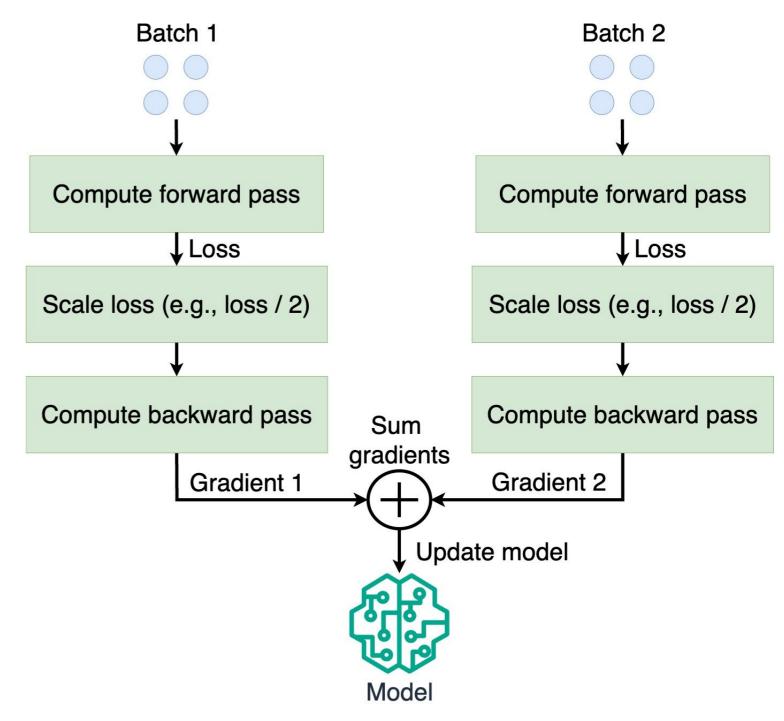
- Large batch sizes: Robust gradient estimates for quicker learning
- GPU memory constrains batch sizes



How does gradient accumulation work?



- Gradient accumulation: Sum gradients over smaller batches
- Effectively train the model on a large batch
- Update model parameters after summing gradients



PyTorch, Accelerator, and Trainer

Ability to Customize

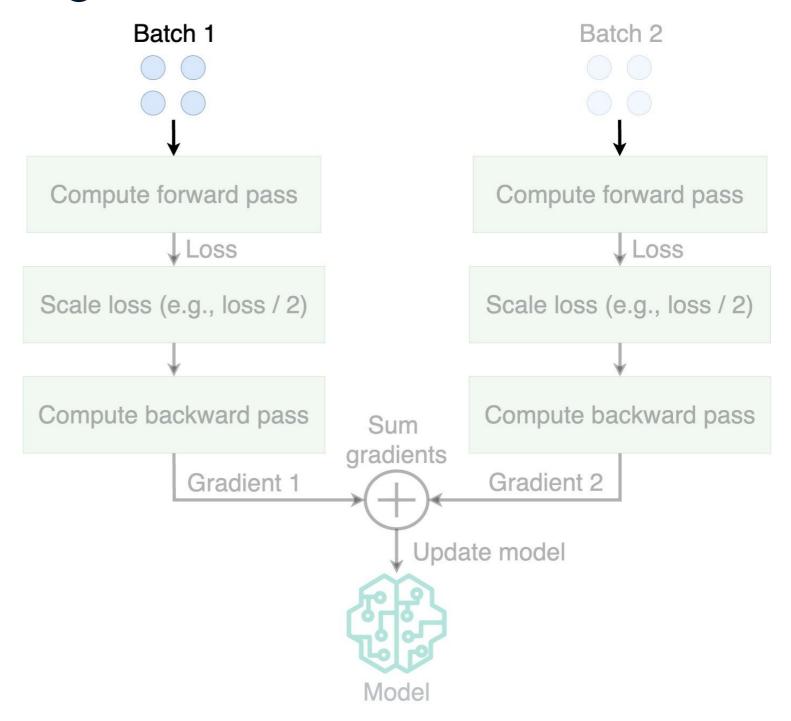


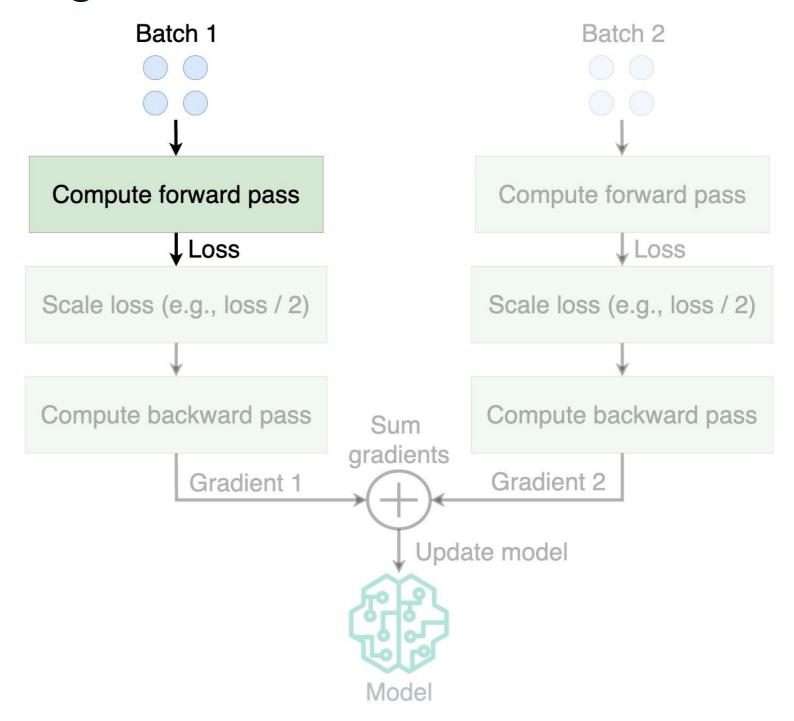
PyTorch, Accelerator, and Trainer

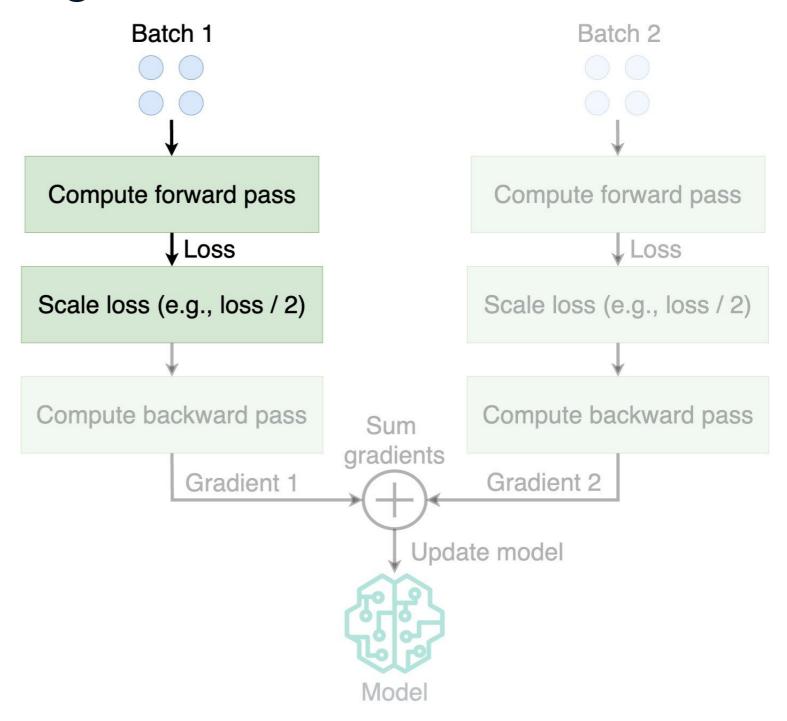
Ability to Customize

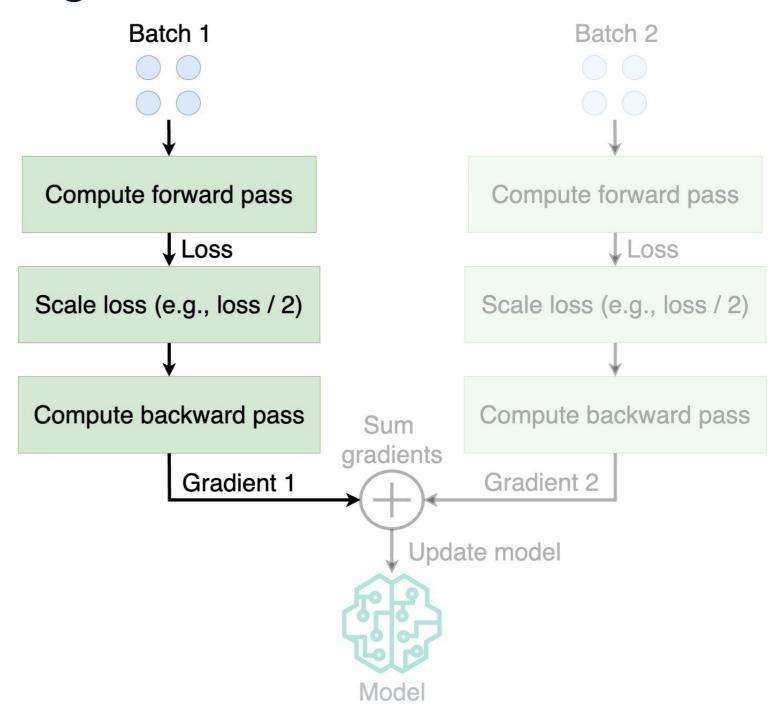
PyTorch, Accelerator, and Trainer

Ability to Customize

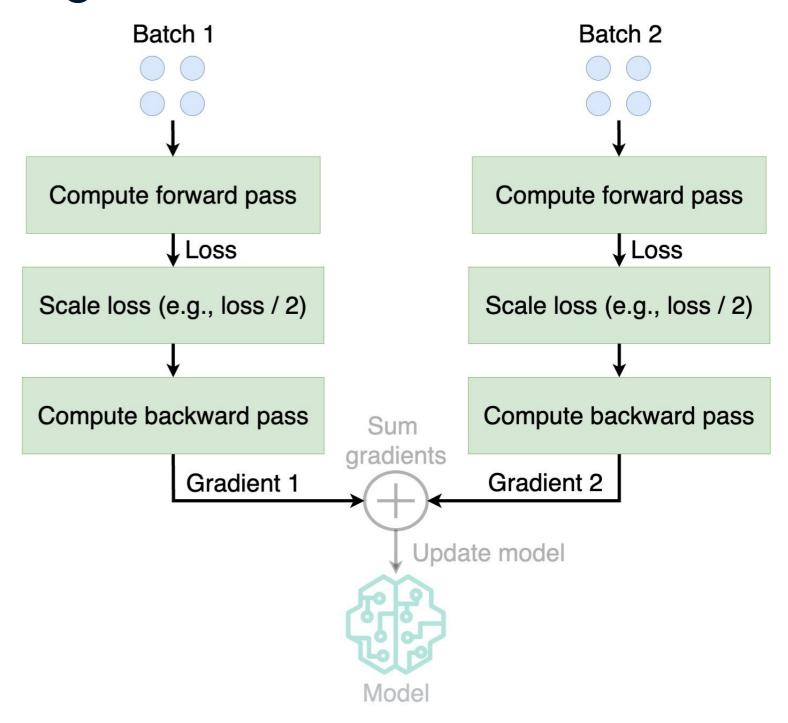




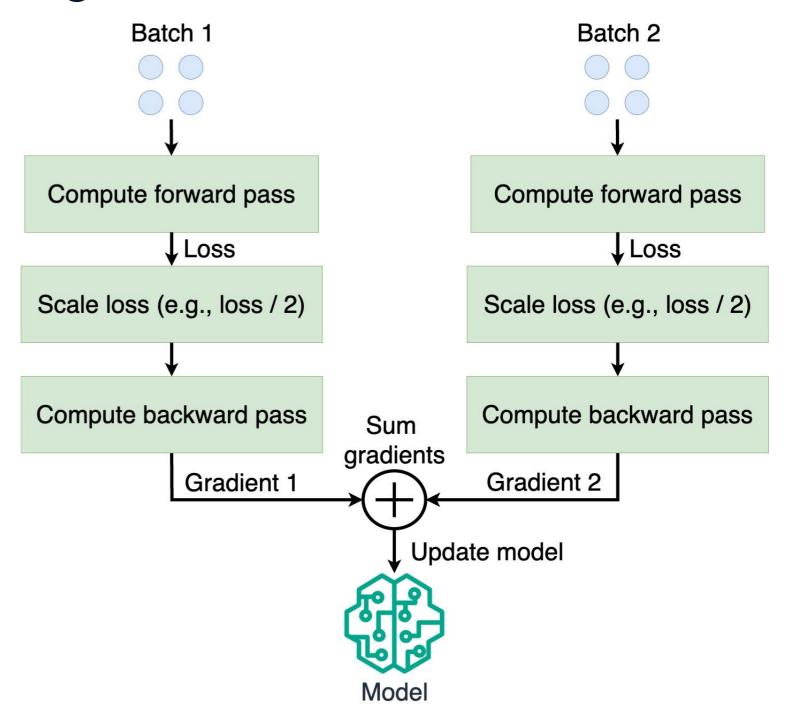




```
for index, batch in enumerate(dataloader):
    inputs, targets = (batch["input_ids"],
                       batch["labels"])
    inputs, targets = (inputs.to(device),
                       targets.to(device))
    outputs = model(inputs, labels=targets)
    loss = outputs.loss
    loss = loss / gradient_accumulation_steps
    loss.backward()
    if ((index + 1)
        % gradient_accumulation_steps == 0):
```




```
for index, batch in enumerate(dataloader):
    inputs, targets = (batch["input_ids"],
                       batch["labels"])
    inputs, targets = (inputs.to(device),
                       targets.to(device))
    outputs = model(inputs, labels=targets)
    loss = outputs.loss
    loss = loss / gradient_accumulation_steps
    loss.backward()
    if ((index + 1)
        % gradient_accumulation_steps == 0):
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
```

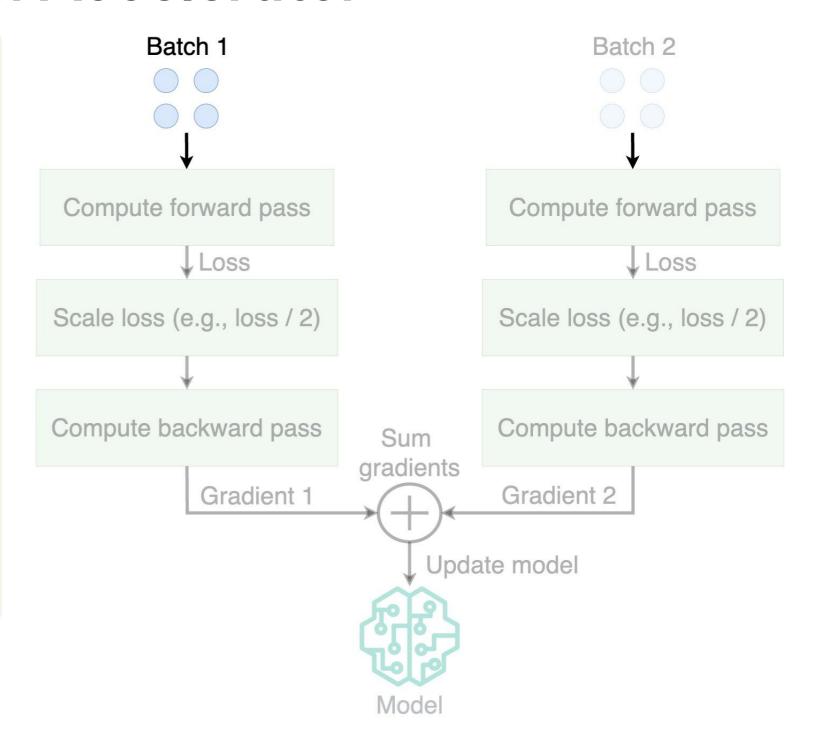


From PyTorch to Accelerator

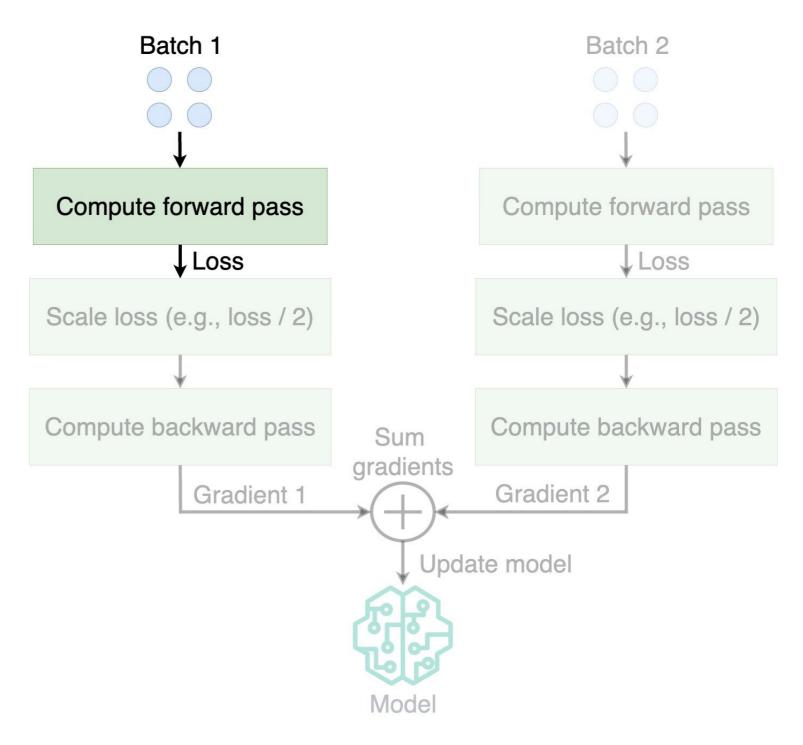
Ability to Customize

From PyTorch to Accelerator

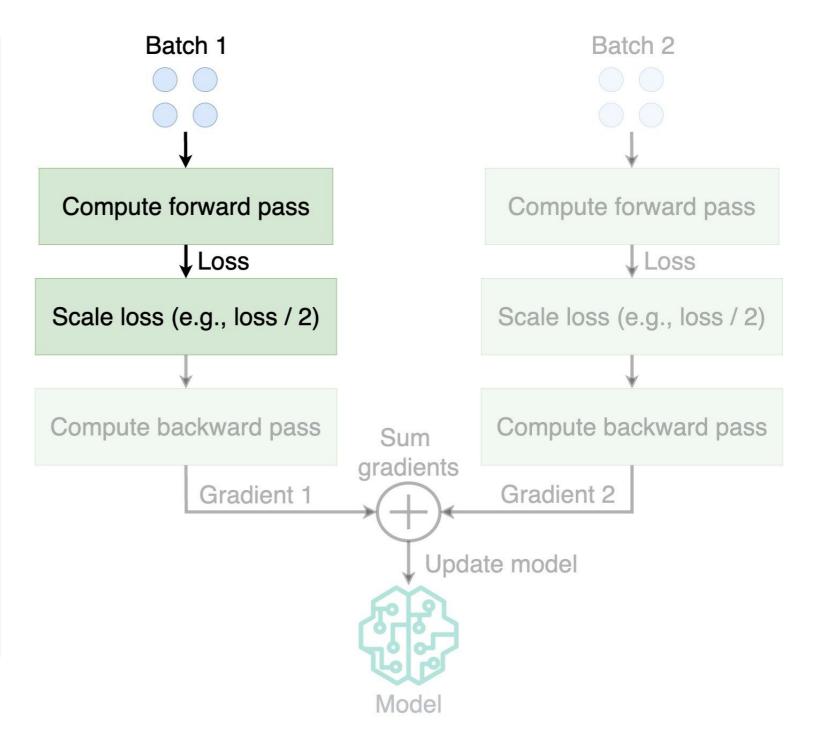
Ability to Customize




```
accelerator = \
    Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader):
        inputs, targets = (batch["input_ids"],
                           batch["labels"])
        outputs = model(inputs,
                        labels=targets)
        loss = outputs.loss
```



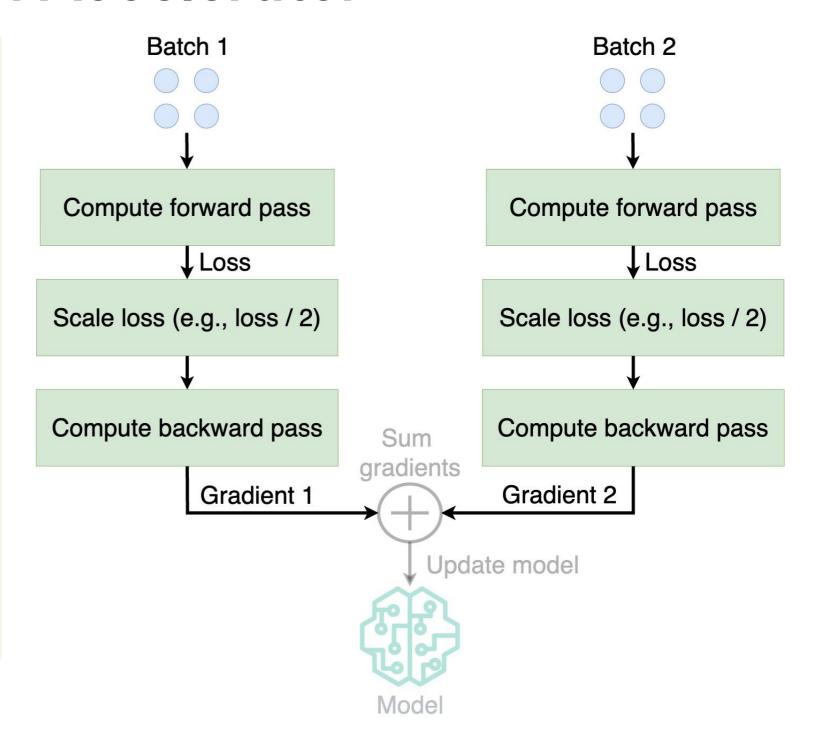

```
accelerator = \
    Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader):
    with accelerator.accumulate(model):
        inputs, targets = (batch["input_ids"],
                           batch["labels"])
        outputs = model(inputs,
                        labels=targets)
        loss = outputs.loss
```



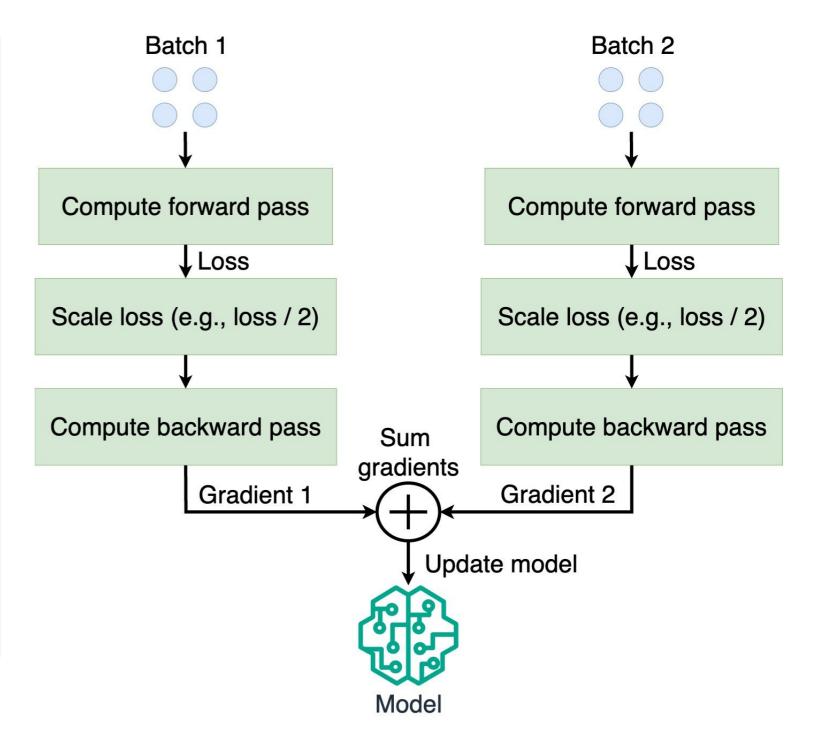

```
accelerator = \
    Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader):
    with accelerator.accumulate(model):
        inputs, targets = (batch["input_ids"],
                           batch["labels"])
        outputs = model(inputs,
                        labels=targets)
        loss = outputs.loss
        accelerator.backward(loss)
```




```
accelerator = \
    Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader):
    with accelerator.accumulate(model):
        inputs, targets = (batch["input_ids"],
                           batch["labels"])
        outputs = model(inputs,
                        labels=targets)
        loss = outputs.loss
        accelerator.backward(loss)
```




```
accelerator = \
    Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader):
    with accelerator.accumulate(model):
        inputs, targets = (batch["input_ids"],
                           batch["labels"])
        outputs = model(inputs,
                        labels=targets)
        loss = outputs.loss
        accelerator.backward(loss)
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
```



From Accelerator to Trainer

Ability to Customize

From Accelerator to Trainer

Ability to Customize

Gradient accumulation with Trainer

```
training_args = TrainingArguments(output_dir="./results",
                                  evaluation_strategy="epoch",
                                  gradient_accumulation_steps=2)
trainer = Trainer(model=model,
                  args=training_args,
                  train_dataset=dataset["train"],
                  eval_dataset=dataset["validation"],
                  compute_metrics=compute_metrics)
trainer.train()
```

```
{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03, 'eval_f1': 0.05}
{'epoch': 2.0, 'eval_loss': 0.68, 'eval_accuracy': 0.19, 'eval_f1': 0.25}
```

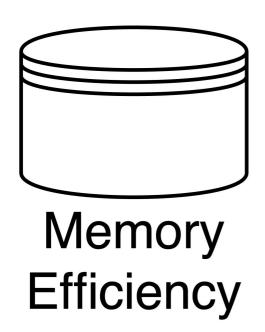
Let's practice!

EFFICIENT AI MODEL TRAINING WITH PYTORCH

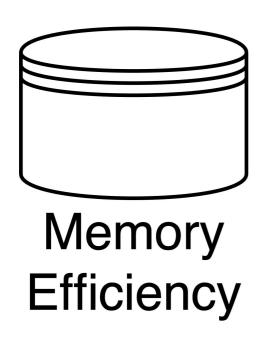
Gradient checkpointing and local SGD

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Dennis LeeData Engineer



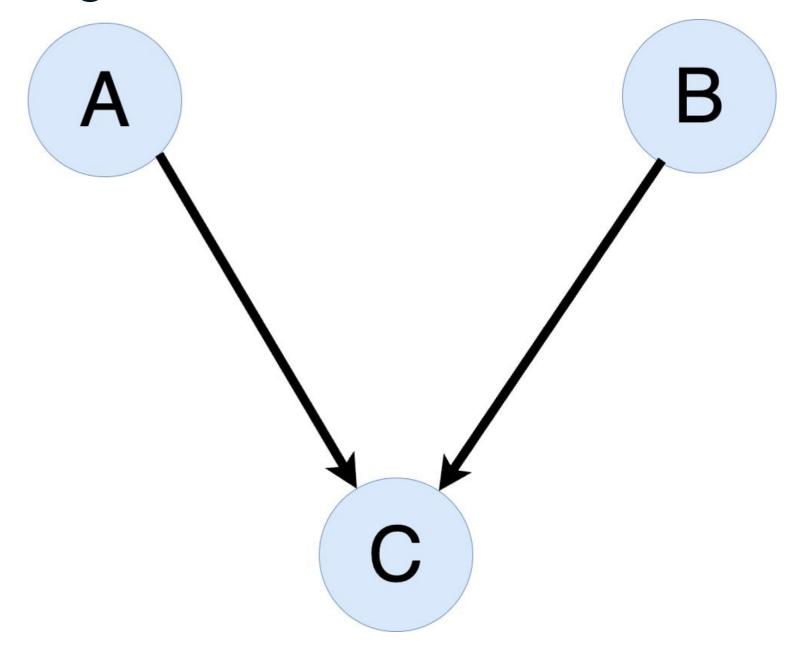
Gradient checkpointing improves memory efficiency



Local SGD addresses communication efficiency

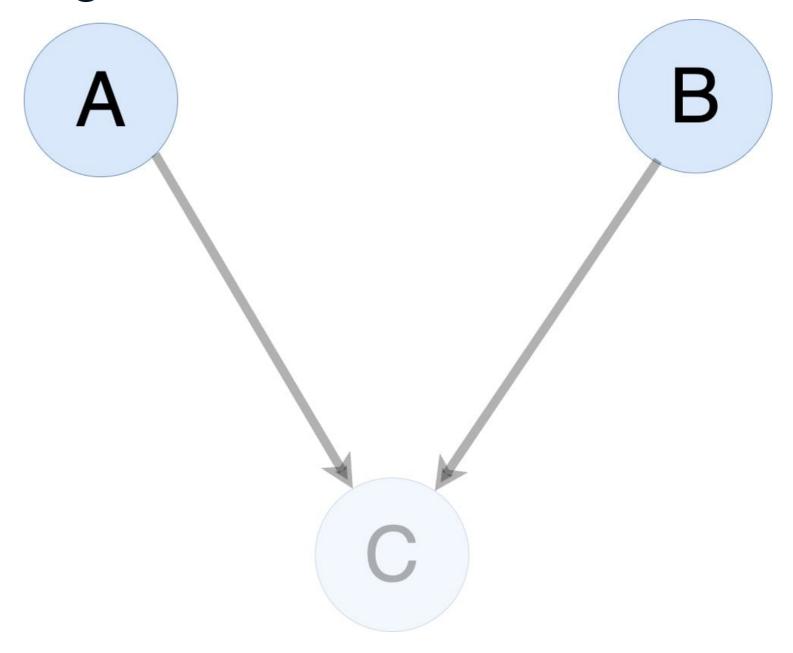
What is gradient checkpointing?

- Gradient checkpointing: reduce memory by selecting which activations to save
- Example: compute A + B = C

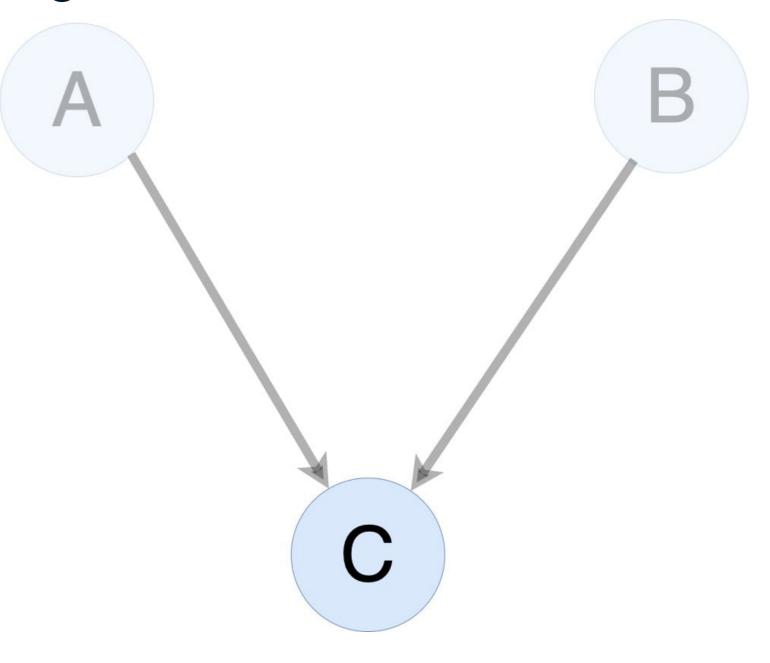


What is gradient checkpointing?

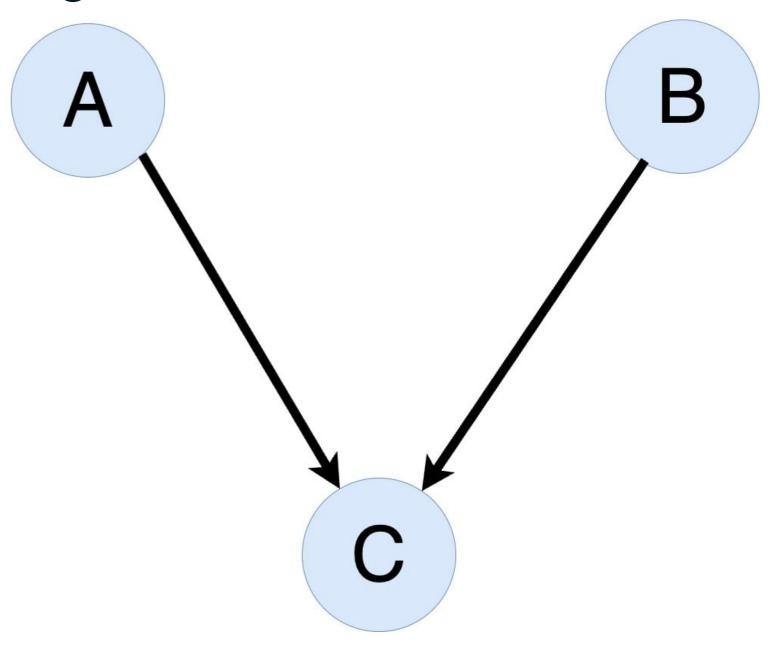
- Gradient checkpointing: reduce memory by selecting which activations to save
- Example: compute A + B = C
 - First compute A, B, then compute C



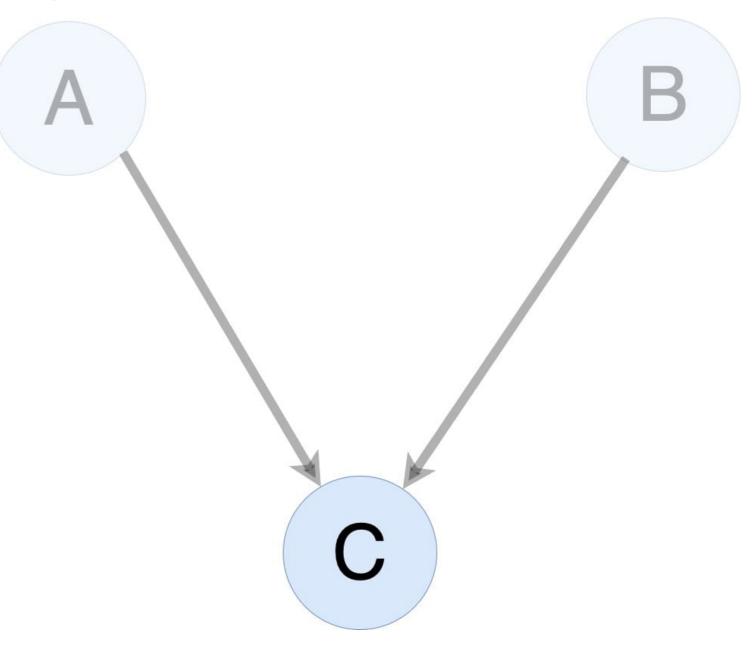
- Gradient checkpointing: reduce memory by selecting which activations to save
- Example: compute A + B = C
 - First compute A, B, then compute C
 - A, B not needed for rest of forward pass
- Should we save or remove A and B?



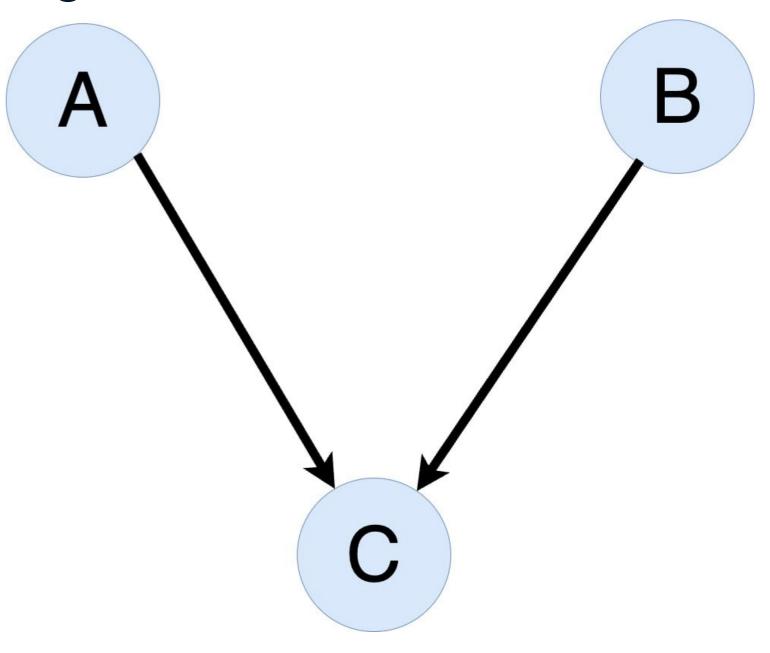
- Gradient checkpointing: reduce memory by selecting which activations to save
- Example: compute A + B = C
 - First compute A, B, then compute C
 - A, B not needed for rest of forward pass
- Should we save or remove A and B?
 - No gradient checkpointing: save A, B



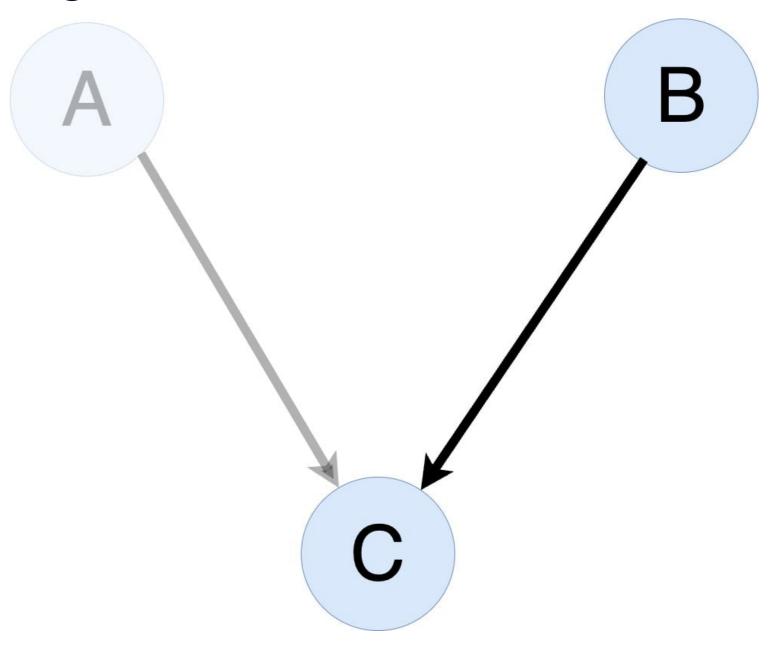
- Gradient checkpointing: reduce memory by selecting which activations to save
- Example: compute A + B = C
 - First compute A, B, then compute C
 - A, B not needed for rest of forward pass
- Should we save or remove A and B?
 - No gradient checkpointing: save A, B
 - Gradient checkpointing: remove A, B



- Gradient checkpointing: reduce memory by selecting which activations to save
- Example: compute A + B = C
 - First compute A, B, then compute C
 - A, B not needed for rest of forward pass
- Should we save or remove A and B?
 - No gradient checkpointing: save A, B
 - Gradient checkpointing: remove A, B
 - Recompute A, B during backward pass



- Gradient checkpointing: reduce memory by selecting which activations to save
- Example: compute A + B = C
 - First compute A, B, then compute C
 - A, B not needed for rest of forward pass
- Should we save or remove A and B?
 - No gradient checkpointing: save A, B
 - Gradient checkpointing: remove A, B
 - Recompute A, B during backward pass
 - If B is expensive to recompute, save it



Trainer and Accelerator

Ability to Customize

Ease of Use

Trainer and Accelerator

Ability to Customize

Ease of Use

Gradient checkpointing with Trainer

```
training_args = TrainingArguments(output_dir="./results",
                                  evaluation_strategy="epoch",
                                  gradient_accumulation_steps=4)
```


Gradient checkpointing with Trainer

```
training_args = TrainingArguments(output_dir="./results",
                                  evaluation_strategy="epoch",
                                  gradient_accumulation_steps=4,
                                  gradient_checkpointing=True)
trainer = Trainer(model=model,
                  args=training_args,
                  train_dataset=dataset["train"],
                  eval_dataset=dataset["validation"],
                  compute_metrics=compute_metrics)
trainer.train()
```

```
{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03, 'eval_f1': 0.05}
```

From Trainer to Accelerator

Ability to Customize

Ease of Use

Gradient checkpointing with Accelerator

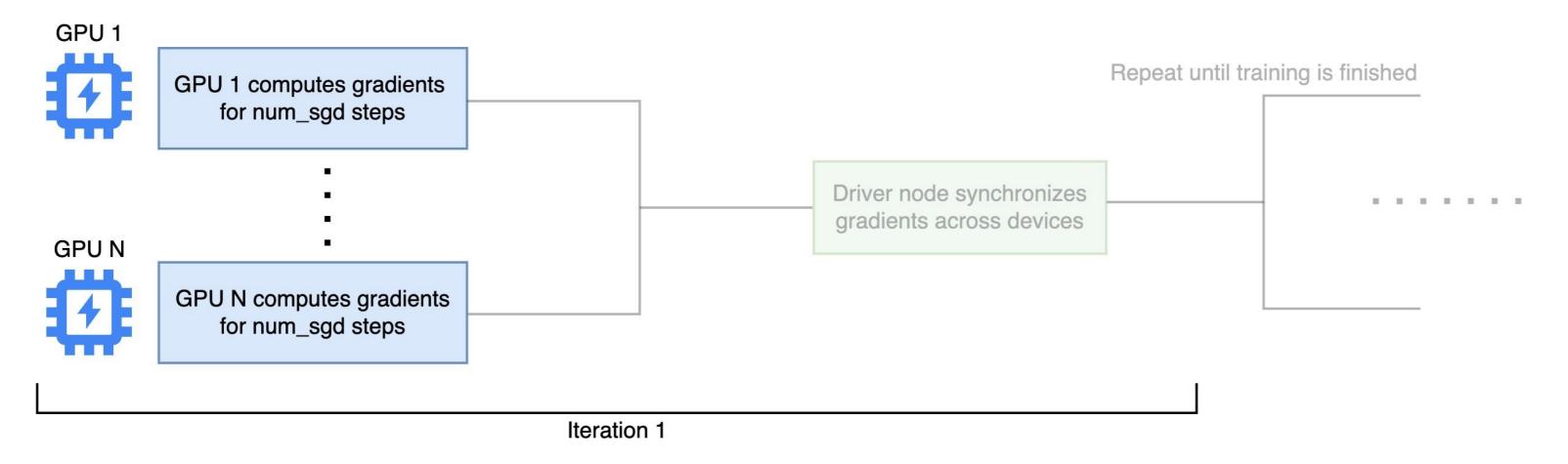
```
accelerator = Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader):
    with accelerator.accumulate(model):
        inputs, targets = batch["input_ids"], batch["labels"]
        outputs = model(inputs, labels=targets)
        loss = outputs.loss
        accelerator.backward(loss)
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
```

Gradient checkpointing with Accelerator

```
accelerator = Accelerator(gradient_accumulation_steps=2)
model.gradient_checkpointing_enable()
for index, batch in enumerate(dataloader):
    with accelerator.accumulate(model):
        inputs, targets = batch["input_ids"], batch["labels"]
        outputs = model(inputs, labels=targets)
        loss = outputs.loss
        accelerator.backward(loss)
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
```

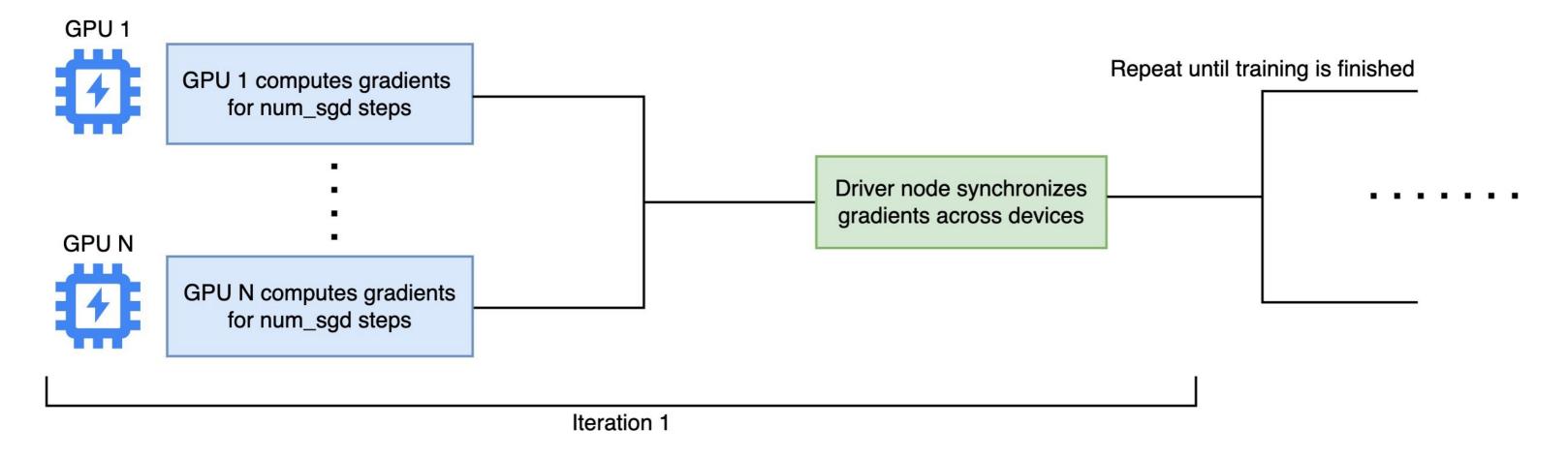
Local SGD improves communication efficiency

What is local SGD?



Each device computes gradients in parallel

What is local SGD?



- Each device computes gradients in parallel
- Gradient synchronization: Driver node updates model parameters on each device
- Local SGD: Reduce frequency of gradient synchronization

Local SGD with Accelerator

```
for index, batch in enumerate(dataloader):
    with accelerator.accumulate(model):
        inputs, targets = batch["input_ids"], batch["labels"]
        outputs = model(inputs, labels=targets)
        loss = outputs.loss
        accelerator.backward(loss)
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
```

Local SGD with Accelerator

```
from accelerate.local_sgd import LocalSGD
with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,
              enabled=True) as local_sgd:
    for index, batch in enumerate(dataloader):
        with accelerator.accumulate(model):
            inputs, targets = batch["input_ids"], batch["labels"]
            outputs = model(inputs, labels=targets)
            loss = outputs.loss
            accelerator.backward(loss)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
```

Local SGD with Accelerator

```
from accelerate.local_sgd import LocalSGD
with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,
              enabled=True) as local_sgd:
    for index, batch in enumerate(dataloader):
        with accelerator.accumulate(model):
            inputs, targets = batch["input_ids"], batch["labels"]
            outputs = model(inputs, labels=targets)
            loss = outputs.loss
            accelerator.backward(loss)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            local_sgd.step()
```

Let's practice!

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Mixed precision training

EFFICIENT AI MODEL TRAINING WITH PYTORCH

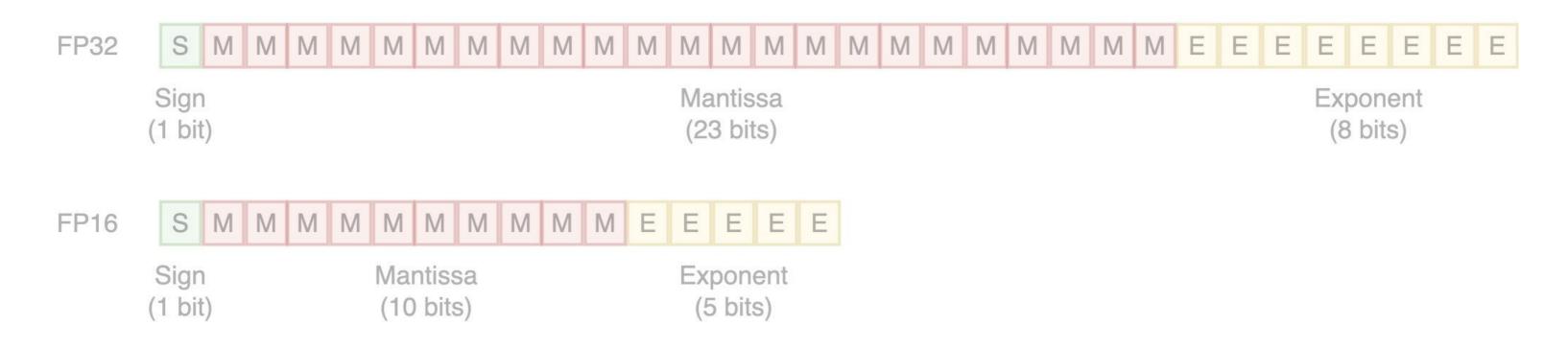
Dennis LeeData Engineer

Mixed precision training accelerates computation

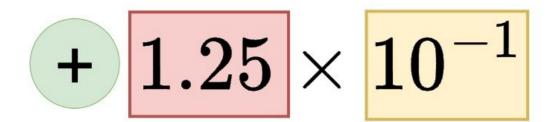
Faster calculations with less precision



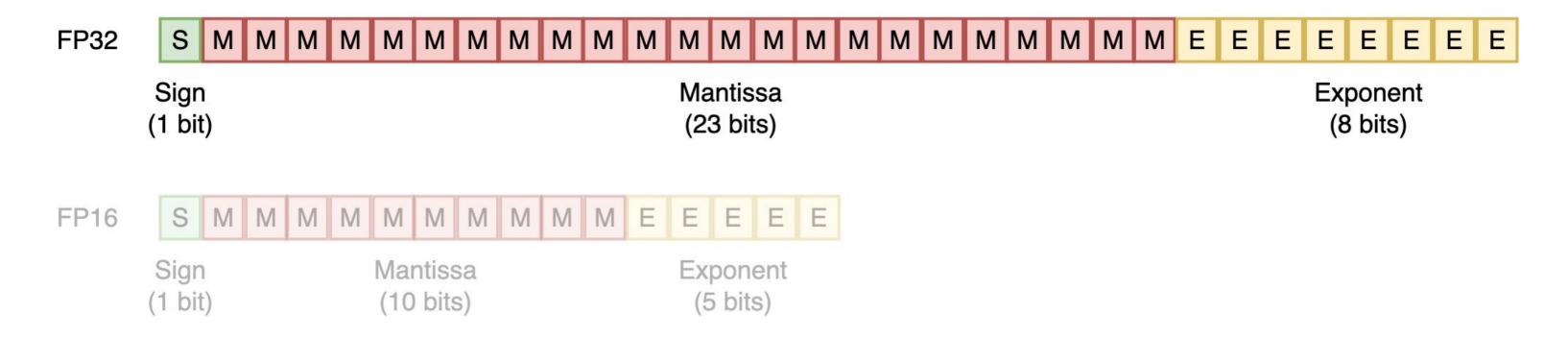
Sign Mantissa Exponent



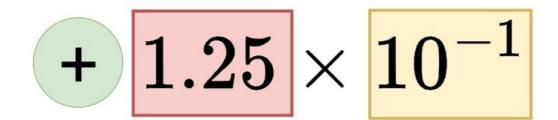
Faster calculations with less precision



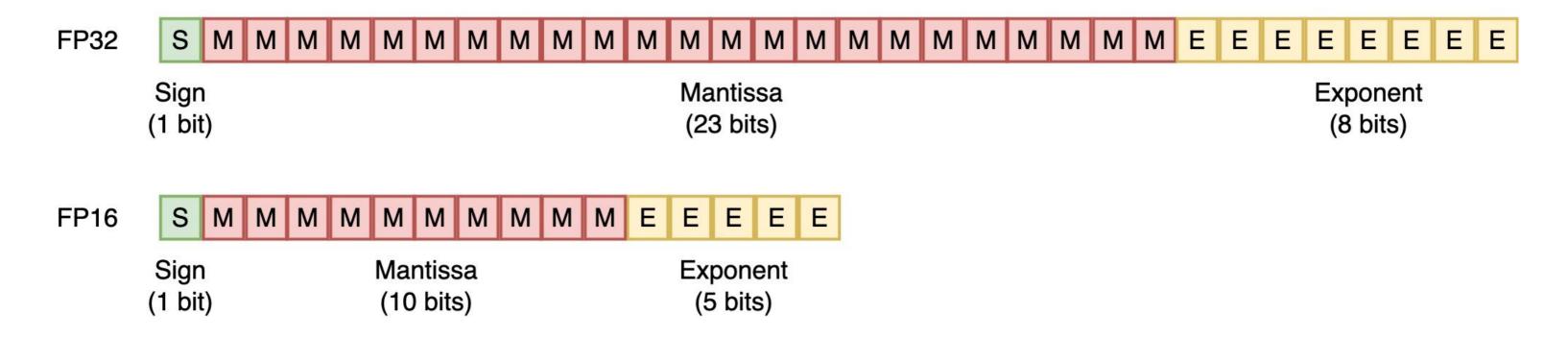
Sign Mantissa Exponent

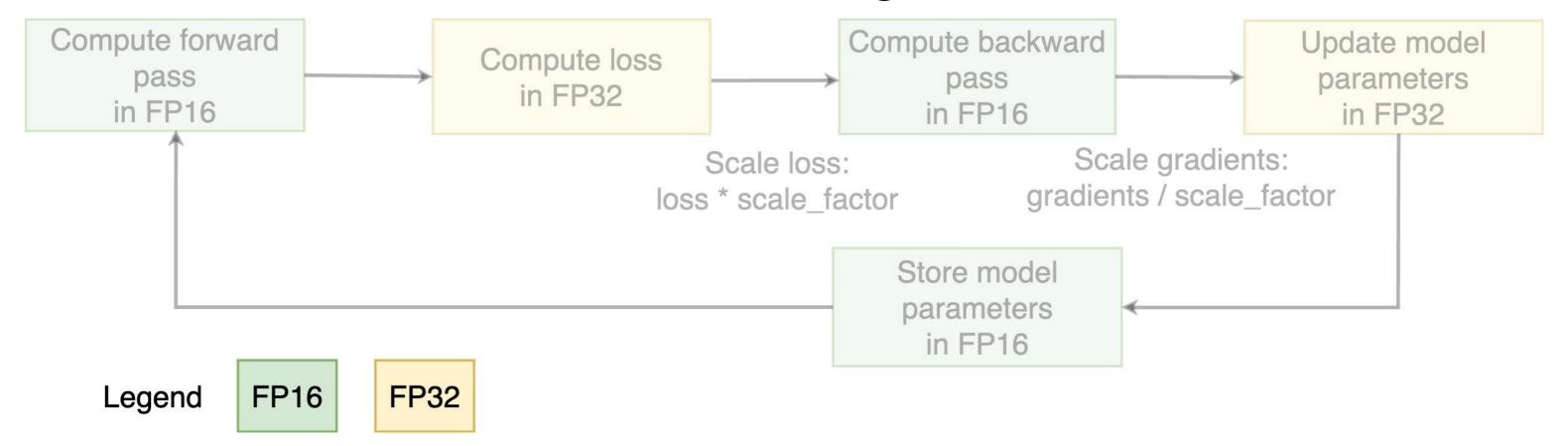


Faster calculations with less precision

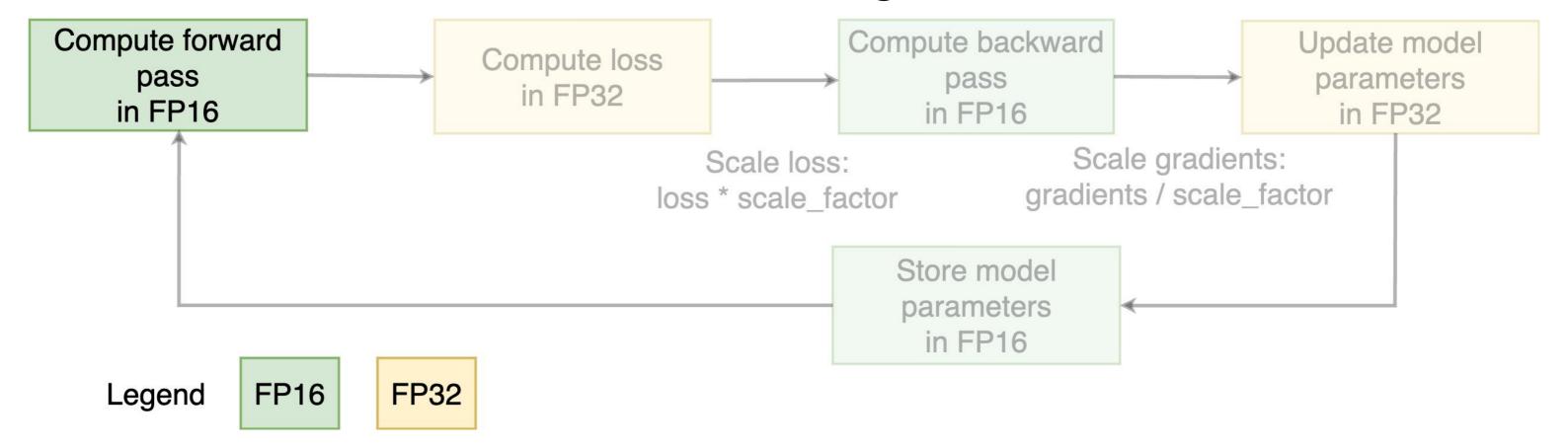


Sign Mantissa Exponent

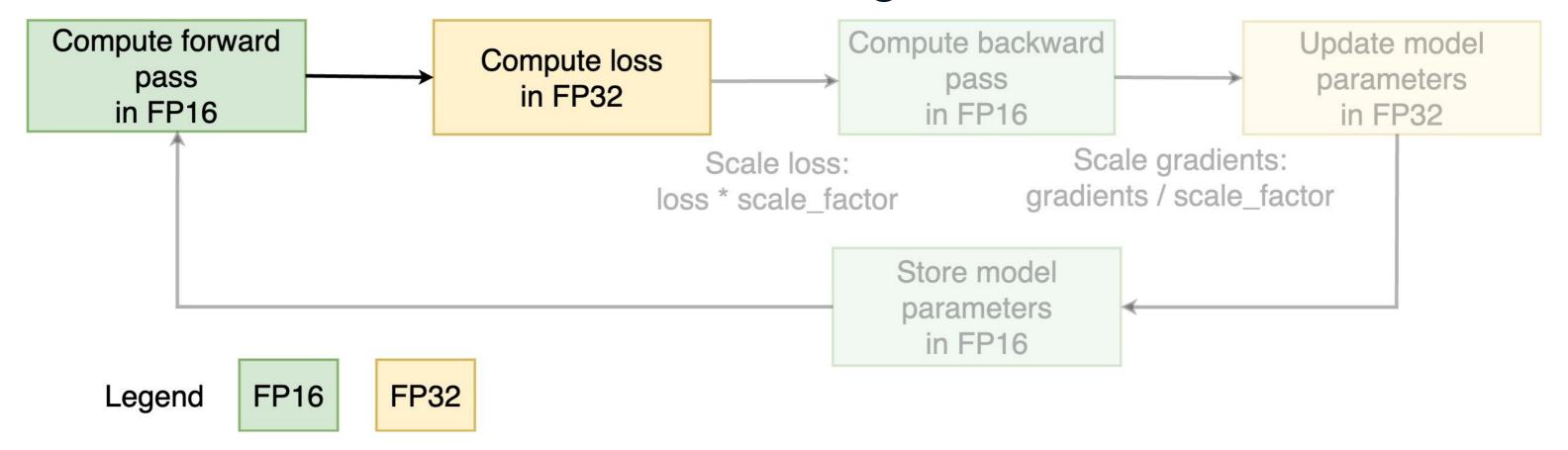




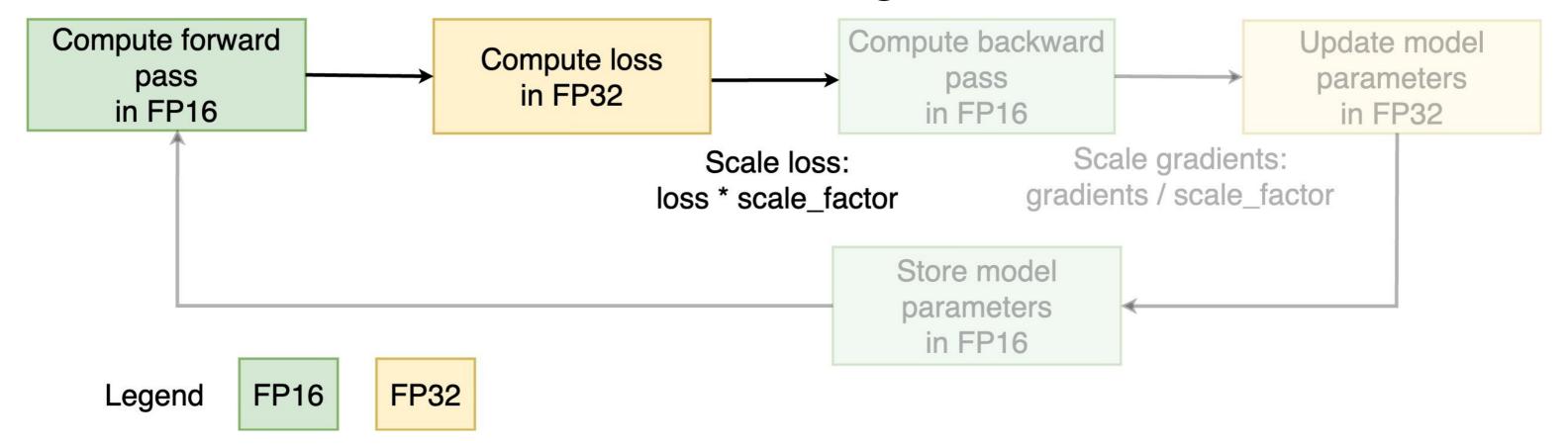
• Mixed precision training: combine FP16, FP32 computations to speed up training



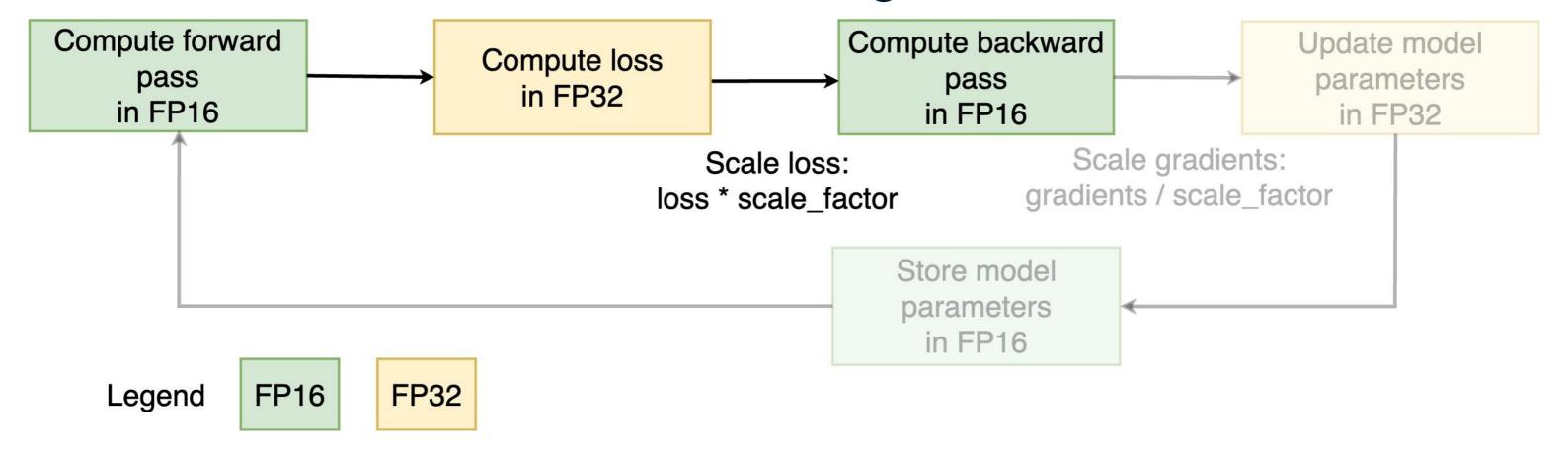
Mixed precision training: combine FP16, FP32 computations to speed up training



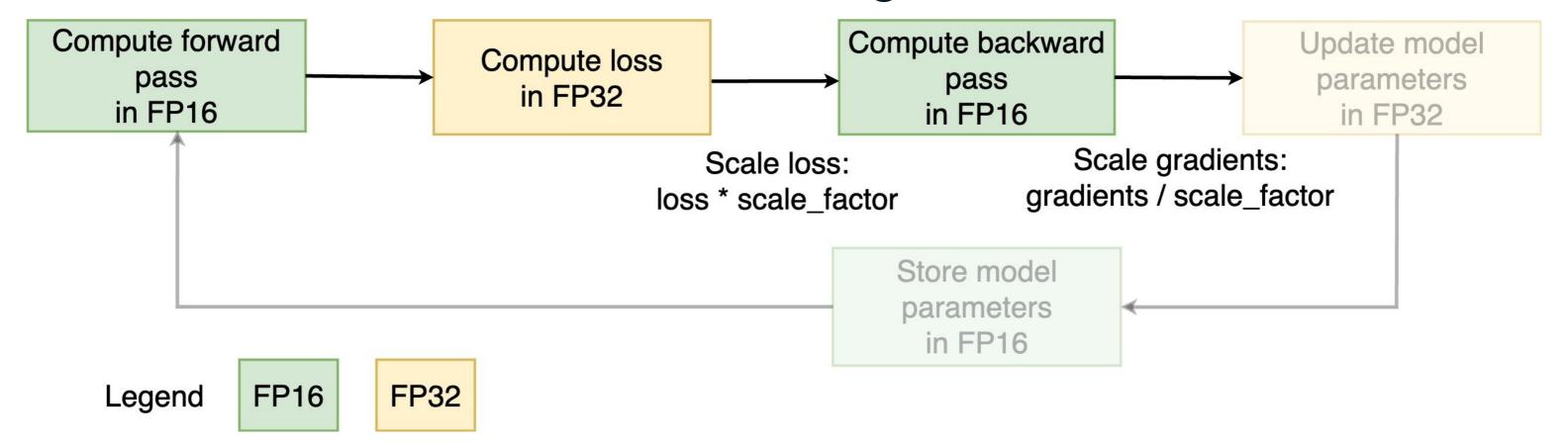
- Mixed precision training: combine FP16, FP32 computations to speed up training
- Underflow: number vanishes to 0 because it falls below precision



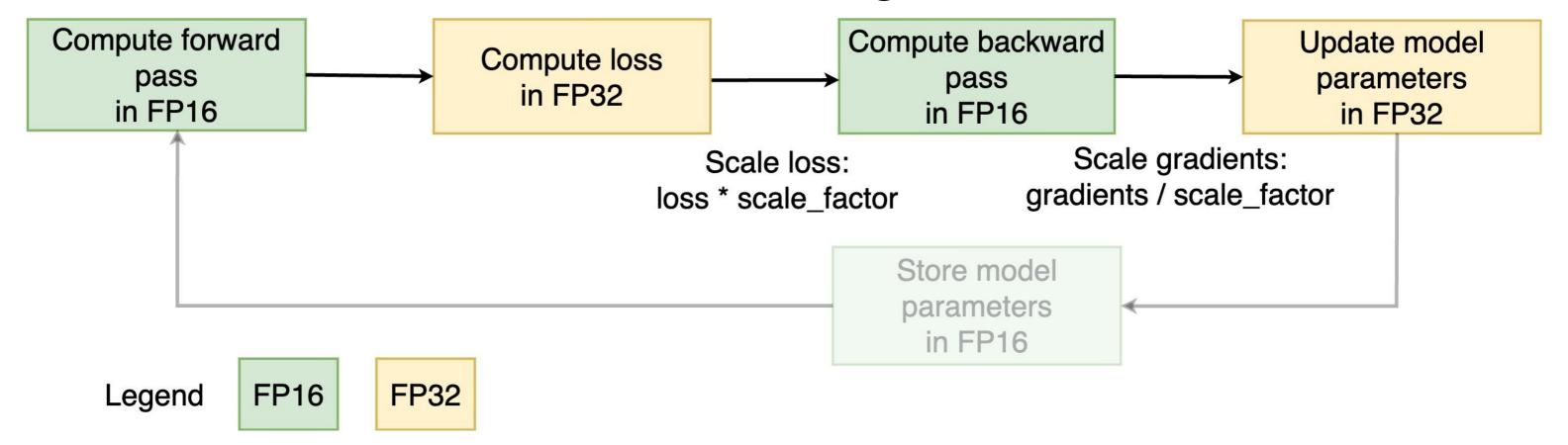
- Mixed precision training: combine FP16, FP32 computations to speed up training
- Underflow: number vanishes to 0 because it falls below precision
- Scale loss to prevent underflow



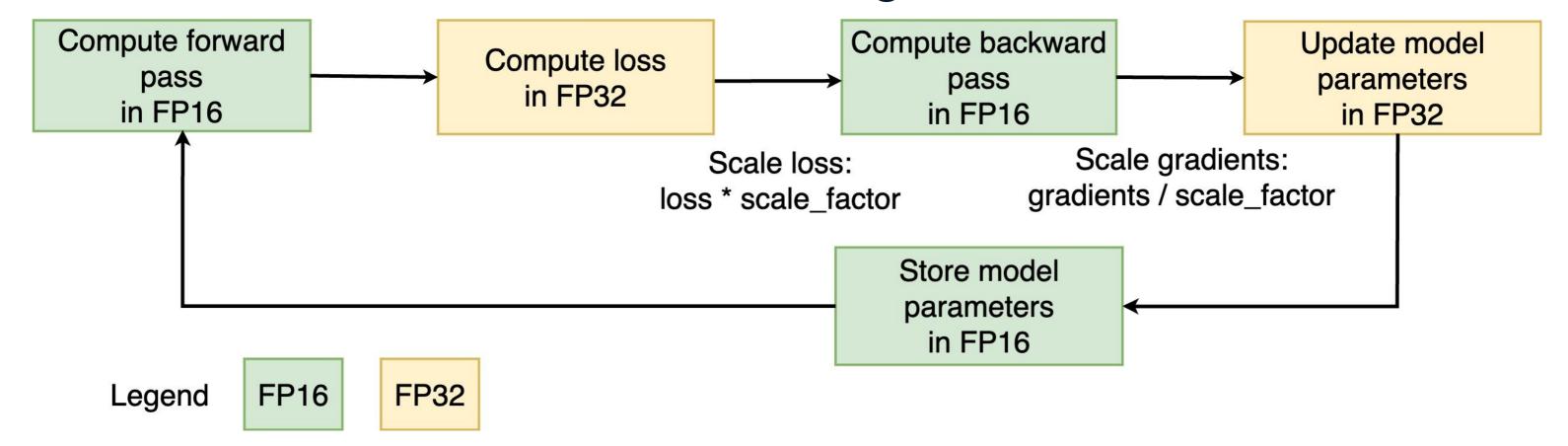
- Mixed precision training: combine FP16, FP32 computations to speed up training
- Underflow: number vanishes to 0 because it falls below precision
- Scale loss to prevent underflow



- Mixed precision training: combine FP16, FP32 computations to speed up training
- Underflow: number vanishes to 0 because it falls below precision
- Scale loss to prevent underflow



- Mixed precision training: combine FP16, FP32 computations to speed up training
- Underflow: number vanishes to 0 because it falls below precision
- Scale loss to prevent underflow



- Mixed precision training: combine FP16, FP32 computations to speed up training
- Underflow: number vanishes to 0 because it falls below precision
- Scale loss to prevent underflow

PyTorch implementation

Ability to Customize

Ease of Use

Mixed precision training with PyTorch

```
scaler = torch.amp.GradScaler()
for batch in train_dataloader:
    inputs, targets = batch["input_ids"], batch["labels"]
    with torch.autocast(device_type="cpu", dtype=torch.float16):
         outputs = model(inputs, labels=targets)
         loss = outputs.loss
    scaler.scale(loss).backward()
    scaler.step(optimizer)
    scaler.update()
    optimizer.zero_grad()
```

From PyTorch to Accelerator

Ability to Customize

Ease of Use

From PyTorch to Accelerator

Ability to Customize

Ease of Use

Mixed precision training with Accelerator

```
accelerator = Accelerator(mixed_precision="fp16")
model, optimizer, train_dataloader, lr_scheduler = \
    accelerator.prepare(model, optimizer, train_dataloader, lr_scheduler)
for batch in train dataloader:
    inputs, targets = batch["input_ids"], batch["labels"]
    outputs = model(inputs, labels=targets)
    loss = outputs.loss
    accelerator.backward(loss)
    optimizer.step()
    optimizer.zero_grad()
```

From Accelerator to Trainer

Ability to Customize

Ease of Use

From Accelerator to Trainer

Ability to Customize

Ease of Use

Mixed precision training with Trainer

```
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    fp16=True
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
    compute_metrics=compute_metrics,
trainer.train()
```

Let's practice!

EFFICIENT AI MODEL TRAINING WITH PYTORCH

