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Gradient accumulation improves memory efficiency
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The problem with large batch sizes
Large batch sizes: Robust gradient estimates for quicker learning

GPU memory constrains batch sizes
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How does gradient accumulation work?

Gradient accumulation: Sum gradients over
smaller batches

Effectively train the model on a large batch

Update model parameters after summing
gradients
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Gradient accumulation with PyTorch
for index, batch in enumerate(dataloader): 
    inputs, targets = (batch["input_ids"],  
                       batch["labels"]) 
    inputs, targets = (inputs.to(device),  
                       targets.to(device)) 
    outputs = model(inputs, labels=targets) 
    loss = outputs.loss 
    loss = loss / gradient_accumulation_steps 
    loss.backward() 
    if ((index + 1)  
        % gradient_accumulation_steps == 0): 
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Gradient accumulation with PyTorch
for index, batch in enumerate(dataloader): 
    inputs, targets = (batch["input_ids"],  
                       batch["labels"]) 
    inputs, targets = (inputs.to(device),  
                       targets.to(device)) 
    outputs = model(inputs, labels=targets) 
    loss = outputs.loss 
    loss = loss / gradient_accumulation_steps 
    loss.backward() 
    if ((index + 1)  
        % gradient_accumulation_steps == 0): 
        optimizer.step() 
        lr_scheduler.step() 
        optimizer.zero_grad() 
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Gradient accumulation with Accelerator
accelerator = \ 
    Accelerator(gradient_accumulation_steps=2)  
for index, batch in enumerate(dataloader): 
 
        inputs, targets = (batch["input_ids"], 
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Gradient accumulation with Accelerator
accelerator = \ 
    Accelerator(gradient_accumulation_steps=2) 
 
for index, batch in enumerate(dataloader): 
    with accelerator.accumulate(model): 
        inputs, targets = (batch["input_ids"], 
                           batch["labels"]) 
        outputs = model(inputs,  
                        labels=targets) 
        loss = outputs.loss 
        accelerator.backward(loss) 
        optimizer.step() 
        lr_scheduler.step() 
        optimizer.zero_grad() 
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Gradient accumulation with Trainer
training_args = TrainingArguments(output_dir="./results", 
                                  evaluation_strategy="epoch", 
                                  gradient_accumulation_steps=2)  
trainer = Trainer(model=model, 
                  args=training_args, 
                  train_dataset=dataset["train"], 
                  eval_dataset=dataset["validation"], 
                  compute_metrics=compute_metrics)  
trainer.train() 

{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03, 'eval_f1': 0.05} 
{'epoch': 2.0, 'eval_loss': 0.68, 'eval_accuracy': 0.19, 'eval_f1': 0.25} 
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Improving training efficiency
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Gradient checkpointing improves memory efficiency
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Local SGD addresses communication efficiency
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What is gradient checkpointing?
Gradient checkpointing: reduce memory by
selecting which activations to save

Example: compute A + B = C
First compute A, B, then compute C

A, B not needed for rest of forward pass

Should we save or remove A and B?
No gradient checkpointing: save A, B

Gradient checkpointing: remove A, B

Recompute A, B during backward pass

If B is expensive to recompute, save it
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Gradient checkpointing with Trainer
training_args = TrainingArguments(output_dir="./results", 
                                  evaluation_strategy="epoch", 
                                  gradient_accumulation_steps=4) 
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Gradient checkpointing with Trainer
training_args = TrainingArguments(output_dir="./results", 
                                  evaluation_strategy="epoch", 
                                  gradient_accumulation_steps=4, 
                                  gradient_checkpointing=True)  
trainer = Trainer(model=model, 
                  args=training_args, 
                  train_dataset=dataset["train"], 
                  eval_dataset=dataset["validation"], 
                  compute_metrics=compute_metrics)  
trainer.train() 

{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03, 'eval_f1': 0.05} 
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Gradient checkpointing with Accelerator
accelerator = Accelerator(gradient_accumulation_steps=2) 

for index, batch in enumerate(dataloader): 
    with accelerator.accumulate(model): 
        inputs, targets = batch["input_ids"], batch["labels"] 
        outputs = model(inputs, labels=targets) 
        loss = outputs.loss 
        accelerator.backward(loss) 
        optimizer.step() 
        lr_scheduler.step() 
        optimizer.zero_grad() 
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Gradient checkpointing with Accelerator
accelerator = Accelerator(gradient_accumulation_steps=2) 
model.gradient_checkpointing_enable() 

for index, batch in enumerate(dataloader): 
    with accelerator.accumulate(model): 
        inputs, targets = batch["input_ids"], batch["labels"] 
        outputs = model(inputs, labels=targets) 
        loss = outputs.loss 
        accelerator.backward(loss) 
        optimizer.step() 
        lr_scheduler.step() 
        optimizer.zero_grad() 
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What is local SGD?

Each device computes gradients in parallel

Gradient synchronization: Driver node updates model parameters on each device

Local SGD: Reduce frequency of gradient synchronization
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Local SGD with Accelerator
 
 
 
 
for index, batch in enumerate(dataloader): 
    with accelerator.accumulate(model): 
        inputs, targets = batch["input_ids"], batch["labels"] 
        outputs = model(inputs, labels=targets) 
        loss = outputs.loss 
        accelerator.backward(loss) 
        optimizer.step() 
        lr_scheduler.step() 
        optimizer.zero_grad() 
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Local SGD with Accelerator
from accelerate.local_sgd import LocalSGD 
 
with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,  
              enabled=True) as local_sgd: 
    for index, batch in enumerate(dataloader): 
        with accelerator.accumulate(model): 
            inputs, targets = batch["input_ids"], batch["labels"] 
            outputs = model(inputs, labels=targets) 
            loss = outputs.loss 
            accelerator.backward(loss) 
            optimizer.step() 
            lr_scheduler.step() 
            optimizer.zero_grad() 
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Local SGD with Accelerator
from accelerate.local_sgd import LocalSGD 
 
with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,  
              enabled=True) as local_sgd: 
    for index, batch in enumerate(dataloader): 
        with accelerator.accumulate(model): 
            inputs, targets = batch["input_ids"], batch["labels"] 
            outputs = model(inputs, labels=targets) 
            loss = outputs.loss 
            accelerator.backward(loss) 
            optimizer.step() 
            lr_scheduler.step() 
            optimizer.zero_grad() 
            local_sgd.step() 



Let's practice!
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Mixed precision training accelerates computation
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What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

Underflow: number vanishes to 0 because it falls below precision

Scale loss to prevent underflow
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Mixed precision training with PyTorch
scaler = torch.amp.GradScaler() 

 
for batch in train_dataloader: 
    inputs, targets = batch["input_ids"], batch["labels"]  
    with torch.autocast(device_type="cpu", dtype=torch.float16):  
         outputs = model(inputs, labels=targets) 
         loss = outputs.loss  
    scaler.scale(loss).backward()  
    scaler.step(optimizer)  
    scaler.update()  
    optimizer.zero_grad() 
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Mixed precision training with Accelerator
accelerator = Accelerator(mixed_precision="fp16") 

 
model, optimizer, train_dataloader, lr_scheduler = \ 
    accelerator.prepare(model, optimizer, train_dataloader, lr_scheduler) 

 
for batch in train_dataloader: 
    inputs, targets = batch["input_ids"], batch["labels"] 
    outputs = model(inputs, labels=targets) 
    loss = outputs.loss 
    accelerator.backward(loss) 
    optimizer.step() 
    optimizer.zero_grad() 
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Mixed precision training with Trainer
training_args = TrainingArguments( 
    output_dir="./results", 
    evaluation_strategy="epoch", 
    fp16=True 
)  
trainer = Trainer( 
    model=model, 
    args=training_args, 
    train_dataset=dataset["train"], 
    eval_dataset=dataset["validation"], 
    compute_metrics=compute_metrics, 
)  
trainer.train() 



Let's practice!
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