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Gradient accumulation improves memory efficiency
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The problem with large batch sizes

e Large batch sizes: Robust gradient estimates for quicker learning

e GPU memory constrains batch sizes

_' Lérgé
batch size

0

r N

Training error:
Out of memory

Small
batch size

'_\":.llll
# [

Model Training completes
successfully
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How does gradient accumulation work?

Large Batch 1
batch  gplit into O
O smaller
batches
Batch 2

e Gradient accumulation: Sum gradients over
smaller batches

o Effectively train the model on a large batch

e Update model parameters after summing
gradients

Batch 1 Batch 2

Compute forward pass Compute forward pass

,I, Loss ,I, Loss

Scale loss (e.g., loss / 2) Scale loss (e.g., loss / 2)

' v

Compute backward pass Compute backward pass

Sum
gradients

&)

) Update model

i

Model

I Gradient 1 Gradient 2 ‘
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PyTorch, Accelerator, and Trainer
Ability to Qustomize
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PyTorch, Accelerator, and Trainer
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Gradient accumulation with PyTorch
Batch 1
for index, batch in enumerate(dataloader): B &
inputs, targets = (batch["input_ids"], &
batch["labels"]) 'lv vlr
inputs, targets = (inputs.to(device),
targets.to(device))
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Gradient accumulation with PyTorch

Batch 1
for index, batch in enumerate(dataloader): -
inputs, targets = (batch["input_ids"], ® @
batch["labels"]) l
inputs, targets = (inputs.to(device), Compute forward pass
targets.to(device)) | | Loss ’

outputs = model(inputs, labels=targets)
lLoss = outputs.loss
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Gradient accumulation with PyTorch

Batch 1
for index, batch in enumerate(dataloader): > &
inputs, targets = (batch["input_ids"], @
batch["labels"]) l '
inputs, targets = (inputs.to(device), Compute forward pass
targets.to(device)) | Loss ‘

outputs = model(inputs, labels=targets)
Scale loss (e.g., loss / 2)
lLoss = outputs.loss

loss = loss / gradient_accumulation_steps v
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Gradient accumulation with PyTorch

for index, batch in enumerate(dataloader):

inputs, targets = (batch["input_ids"],

batch["labels"])

inputs, targets = (inputs.to(device),

targets.to(device))

outputs = model(inputs, labels=targets)

Loss
Loss
Loss.

= outputs.loss
= loss / gradient_accumulation_steps
backward()

Batch 1

o8 '

Compute forward pass
,], Loss v

Scale loss (e.g., loss / 2)

| ,,

Compute backward pass

I Gradient 1
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Gradient accumulation with PyTorch

for index, batch in enumerate(dataloader):
inputs, targets = (batch["input_ids"],
batch["labels"])
inputs, targets = (inputs.to(device),
targets.to(device))
outputs = model(inputs, labels=targets)
lLoss = outputs.loss
loss = loss / gradient_accumulation_steps
loss.backward()
if ((index + 1)
% gradient_accumulation_steps == 0):

Batch 1

o6

Compute forward pass
,], Loss

Scale loss (e.g., loss / 2)

|

Compute backward pass

I Gradient 1

Batch 2

Compute forward pass

,I, Loss

Scale loss (e.g., loss / 2)

|

Compute backward pass

Gradient 2 ‘
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Gradient accumulation with PyTorch

for index, batch in enumerate(dataloader):
inputs, targets = (batch["input_ids"],
batch["labels"])
inputs, targets = (inputs.to(device),
targets.to(device))
outputs = model(inputs, labels=targets)
lLoss = outputs.loss
loss = loss / gradient_accumulation_steps
loss.backward()
if ((index + 1)
% gradient_accumulation_steps == 0):
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

Batch 1 Batch 2

Compute forward pass Compute forward pass

,I, Loss ,I, Loss

Scale loss (e.g., loss / 2) Scale loss (e.g., loss / 2)

' v

Compute backward pass Compute backward pass

Sum
gradients

&)

Update model

I Gradient 1 Gradient 2 ‘

\/

Model
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From PyTorch to Accelerator
Ability to Qustomize
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Gradient accumulation with Accelerator

Batch 1
accelerator = \ ~ -
Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader): l l

inputs, targets = (batch["input_ids"],
batch["labels"])

EFFICIENT Al MODEL TRAINING WITH PYTORCH



Gradient accumulation with Accelerator

Batch 1
accelerator = \ -
Accelerator(gradient_accumulation_steps=2)

oo

for index, batch in enumerate(dataloader): Compute forward pass

inputs, targets = (batch["input_ids"], lLOSS v
batch["labels"])
outputs = model(inputs,
labels=targets)
lLoss = outputs.loss
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o o ®
Gradient accumulation with Accelerator
Batch 1
accelerator = \ o

Accelerator(gradient_accumulation_steps=2) @ O

for index, batch in enumerate(dataloader): Compute forward pass
with accelerator.accumulate(model): lL

0SS
inputs, targets = (batch["input_ids"], !

batch["labels"]) Scale loss (e.g., loss / 2)
outputs = model(inputs, , '

labels=targets)
lLoss = outputs.loss
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Gradient accumulation with Accelerator

Batch 1
accelerator = \ -
Accelerator(gradient_accumulation_steps=2)

o8 '

for index, batch in enumerate(dataloader): Compute forward pass

with accelerator.accumulate(model):

. _ . \lLoss }
inputs, targets = (batch["input_ids"],

batch[u'l_abe'l_su]) Scale loss (e.g., IOSS/2)
outputs = model(inputs, i |

Labels=targets) Compute backward pass

lLoss = outputs.loss
accelerator.backward(loss) I(madbnt1
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Gradient accumulation with Accelerator

Batch 1 Batch 2
accelerator = \ o .

Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):

Compute forward pass Compute forward pass
with accelerator.accumulate(model):
. _ . ,], Loss ,I,Loss
inputs, targets = (batch["input_ids"],
batch["labels"]) Scale loss (e.g., loss / 2) Scale loss (e.g., loss / 2)

outputs = model(inputs, ) }

labels=targets) Compute backward pass Compute backward pass
lLoss = outputs.loss
accelerator.backward(loss) I Gradient1 _Gradient 2 ‘
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Gradient accumulation with Accelerator

accelerator = \
Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):

with accelerator.accumulate(model):

inputs, targets = (batch["input_ids"],
batch["labels"])
outputs = model(inputs,
labels=targets)

lLoss = outputs.loss
accelerator.backward(loss)
optimizer.step()
1r_scheduler.step()
optimizer.zero_grad()

Batch 1 Batch 2

Compute forward pass Compute forward pass

,I, Loss ,I, Loss

Scale loss (e.g., loss / 2) Scale loss (e.g., loss / 2)

' v

Compute backward pass Compute backward pass

Sum
gradients

&)

Update model

I Gradient 1 Gradient 2 ‘

\/

Model
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From Accelerator to Trainer
Ability to Qustomize
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From Accelerator to Trainer
Ability to Qustomize
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Gradient accumulation with Trainer

training_args = TrainingArguments(output_dir="./results",
evaluation_strategy="epoch",
gradient_accumulation_steps=2)
trainer = Trainer(model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
compute_metrics=compute_metrics)
trainer.train()

{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03,

{'epoch': 2.0, 'eval_loss': 0.68, 'eval_accuracy': 0.19,
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Let's practice!
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Gradient checkpointing improves memory efficiency
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Local SGD addresses communication efficiency

Communication
Efficiency
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What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | A | B

e Example: compute A+B=C

C
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What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | A | | B

e Example: compute A+B=C o p
o First compute A, B, then compute C
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What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
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What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | A | B

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
o No gradient checkpointing: save A, B

C
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What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
o No gradient checkpointing: save A, B

o Gradient checkpointing: remove A, B )
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What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | A | B

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
o No gradient checkpointing: save A, B

o Gradient checkpointing: remove A, B

o Recompute A, B during backward pass | C
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What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | B

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
o No gradient checkpointing: save A, B

o Gradient checkpointing: remove A, B q
o Recompute A, B during backward pass | C

o If B is expensive to recompute, save it
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Trainer and Accelerator
Ability to Qustomize
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Trainer

Ease of Use
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Trainer and Accelerator
Ability to Qustomize

Trainer

Ease of Use
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Gradient checkpointing with Trainer

training_args = TrainingArguments(output_dir="./results",
evaluation_strategy="epoch",
gradient_accumulation_steps=4)
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Gradient checkpointing with Trainer

training_args = TrainingArguments(output_dir="./results",
evaluation_strategy="epoch",
gradient_accumulation_steps=4,
gradient_checkpointing=True)
trainer = Trainer(model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
compute_metrics=compute_metrics)
trainer.train()

{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03, 'eval_f1l': 0.05}
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From Trainer to Accelerator
Ability to Qustomize
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Gradient checkpointing with Accelerator

accelerator = Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):

inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
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Gradient checkpointing with Accelerator

accelerator = Accelerator(gradient_accumulation_steps=2)

model.gradient_checkpointing_enable()

for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):

inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
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Local SGD improves communication efficiency

Communication
Efficiency
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What is local SGD?

GPU 1

GPU 1 computes gradients
for num_sgd steps

GPU N computes gradients
for num_sgd steps

lteration 1

e Each device computes gradients in parallel
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What is local SGD?

GPU 1
+ GPU 1 computes gradients Repeat until training is finished
- for num_sgd steps
- Driver node synchronizes | "= omomomew
- gradients across devices
GPUN i

GPU N computes gradients
for num_sgd steps

lteration 1

e Each device computes gradients in parallel
e Gradient synchronization: Driver node updates model parameters on each device

e Local SGD: Reduce frequency of gradient synchronization
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Local SGD with Accelerator

for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):

inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
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Local SGD with Accelerator

from accelerate.local_sgd import LocalSGD

with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,
enabled=True) as local_sqgd:
for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):
inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
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Local SGD with Accelerator

from accelerate.local_sgd import LocalSGD

with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,
enabled=True) as local_sqgd:
for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):
inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
local_sgd.step()
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Let's practice!
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Mixed precision
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Mixed precision training accelerates computation

Computational
Efficiency
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Faster calculations with less precision

+11.25/x 107t

Sign Mantissa  Exponent
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Faster calculations with less precision

+11.25/x 1071

Sign Mantissa  Exponent

P32 | s [M[m[M[m[m[M[m[M[m[M[m[M|[m[M[m[M[m[MIM[MIM|m[M|E E E E E E EE

Sign Mantissa Exponent
(1 bit) (23 bits) (8 bits)
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Faster calculations with less precision

+1.25/x 107}

Sign Mantissa  Exponent

P32 |s [M[M[mM[M[m[m[M[m[M[M[M[M][mM[M[MIM[M[m[M[M][m[M|m]|E E E E E E E E

Sign Mantissa Exponent
(1 bit) (23 bits) (8 bits)

Fri6  |s [M[M[m[m[m[m[mIm[m[m]E E E E E

Sign Mantissa Exponent
(1 bit) (10 bits) (5 bits)
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What is mixed precision training?

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training

EFFICIENT Al MODEL TRAINING WITH PYTORCH



What is mixed precision training?

Compute forward
pass | - > >
in FP16

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training

EFFICIENT Al MODEL TRAINING WITH PYTORCH



What is mixed precision training?

Compute forward
pass —>
in FP16

Compute loss
in FP32

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training

e Underflow: number vanishes to O because it falls below precision
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What is mixed precision training?

Compute forward
pass —>
in FP16

Compute loss
in FP32

Scale loss:
loss * scale factor

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow
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What is mixed precision training?

Compute forward Compute backward
Compute loss

pass — . > pass - -
in FP16 it in FP16

Scale loss:
loss * scale factor

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow
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What is mixed precision training?

Compute forward Compute backward

Compute loss

pass = . > pass >
in FP16 it in FP16
Scale loss: Scale gradients:
loss * scale_factor gradients / scale_factor

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow

EFFICIENT Al MODEL TRAINING WITH PYTORCH



What is mixed precision training?

Compute forward Compute backward Update model
Compute loss
pass —> n EP32 > pass > parameters
in FP16 in FP16 in FP32
Scale loss: Scale gradients:
loss * scale factor gradients / scale_factor

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow
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What is mixed precision training?

Compute forward Compute backward Update model
Compute loss
pass —> n EP32 > pass > parameters
n1Fﬁ16 in FP16 in FP32
Scale loss: Scale gradients:
loss * scale factor gradients / scale_factor
Store model
parameters <
in FP16

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow
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PyTorch implementation
Ability to Qustomize

O

PyTorch

Ease of Use
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Mixed precision training with PyTorch

torch.amp.GradScaler()

scaler

for batch in train_dataloader:

inputs, targets = batch["input_ids"], batch["labels"]

with torch.autocast(device_type="cpu", dtype=torch.floatlé):
outputs = model(inputs, labels=targets)
lLoss = outputs.loss

scaler.scale(loss).backward()

scaler.step(optimizer)

scaler.update()

optimizer.zero_grad()
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From PyTorch to Accelerator
Ability to Qustomize
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Mixed precision training with Accelerator

accelerator = Accelerator(mixed_precision="fpl1l6")

model, optimizer, train_dataloader, lr_scheduler = \
accelerator.prepare(model, optimizer, train_dataloader, 1lr_scheduler)

for batch in train_dataloader:
inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
lLoss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
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From Accelerator to Trainer
Ability to Qustomize

- AA
e’

Accelerator

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH



From Accelerator to Trainer
Ability to Qustomize

Trainer

Ease of Use
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Mixed precision training with Trainer

training_args = TrainingArguments(
output_dir="./results",
evaluatlion_strategy="epoch",
fplé6=True

)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],

eval_dataset=dataset["validation"],

compute_metrics=compute_metrics,

)

trainer.train()
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Let's practice!

EFFICIENT Al MODEL TRAINING WITH PYTORCH



