Gradient
accumulation

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Dennis Lee
Data Engineer

Distributed training

Chapter 2
Distributed training

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Efficient training

Chapter 3
Efficient training

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Improving training efficiency

——

N— _
Memory

Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Improving training efficiency

——

N— _
Memory Communication
Efficiency Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Improving training efficiency

S

N— _
Memory Communication Computational
Efficiency Efficiency Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation improves memory efficiency

——

N— _
Memory

Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

The problem with large batch sizes

e Large batch sizes: Robust gradient estimates for quicker learning

e GPU memory constrains batch sizes

_' Lérgé
batch size

0

r N

Training error:
Out of memory

Small
batch size

'_\":.llll
[

Model Training completes
successfully

EFFICIENT Al MODEL TRAINING WITH PYTORCH

How does gradient accumulation work?

Large Batch 1
batch gplit into O
O smaller
batches
Batch 2

e Gradient accumulation: Sum gradients over
smaller batches

o Effectively train the model on a large batch

e Update model parameters after summing
gradients

Batch 1 Batch 2

Compute forward pass Compute forward pass

,I, Loss ,I, Loss

Scale loss (e.g., loss / 2) Scale loss (e.g., loss / 2)

' v

Compute backward pass Compute backward pass

Sum
gradients

&)

) Update model

i

Model

I Gradient 1 Gradient 2 ‘

EFFICIENT Al MODEL TRAINING WITH PYTORCH

PyTorch, Accelerator, and Trainer
Ability to Qustomize

O

PyTorch

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

PyTorch, Accelerator, and Trainer
Ability to Qustomize

- AA
N’

Accelerator

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

PyTorch, Accelerator, and Trainer
Ability to Qustomize

Trainer

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch
Batch 1
for index, batch in enumerate(dataloader): B &
inputs, targets = (batch["input_ids"], &
batch["labels"]) 'lv vlr
inputs, targets = (inputs.to(device),
targets.to(device))

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch

Batch 1
for index, batch in enumerate(dataloader): -
inputs, targets = (batch["input_ids"], ® @
batch["labels"]) l
inputs, targets = (inputs.to(device), Compute forward pass
targets.to(device)) | | Loss ’

outputs = model(inputs, labels=targets)
lLoss = outputs.loss

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch

Batch 1
for index, batch in enumerate(dataloader): > &
inputs, targets = (batch["input_ids"], @
batch["labels"]) l '
inputs, targets = (inputs.to(device), Compute forward pass
targets.to(device)) | Loss ‘

outputs = model(inputs, labels=targets)
Scale loss (e.g., loss / 2)
lLoss = outputs.loss

loss = loss / gradient_accumulation_steps v

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch

for index, batch in enumerate(dataloader):

inputs, targets = (batch["input_ids"],

batch["labels"])

inputs, targets = (inputs.to(device),

targets.to(device))

outputs = model(inputs, labels=targets)

Loss
Loss
Loss.

= outputs.loss
= loss / gradient_accumulation_steps
backward()

Batch 1

o8 '

Compute forward pass
,], Loss v

Scale loss (e.g., loss / 2)

| ,,

Compute backward pass

I Gradient 1

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch

for index, batch in enumerate(dataloader):
inputs, targets = (batch["input_ids"],
batch["labels"])
inputs, targets = (inputs.to(device),
targets.to(device))
outputs = model(inputs, labels=targets)
lLoss = outputs.loss
loss = loss / gradient_accumulation_steps
loss.backward()
if ((index + 1)
% gradient_accumulation_steps == 0):

Batch 1

o6

Compute forward pass
,], Loss

Scale loss (e.g., loss / 2)

|

Compute backward pass

I Gradient 1

Batch 2

Compute forward pass

,I, Loss

Scale loss (e.g., loss / 2)

|

Compute backward pass

Gradient 2 ‘

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch

for index, batch in enumerate(dataloader):
inputs, targets = (batch["input_ids"],
batch["labels"])
inputs, targets = (inputs.to(device),
targets.to(device))
outputs = model(inputs, labels=targets)
lLoss = outputs.loss
loss = loss / gradient_accumulation_steps
loss.backward()
if ((index + 1)
% gradient_accumulation_steps == 0):
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

Batch 1 Batch 2

Compute forward pass Compute forward pass

,I, Loss ,I, Loss

Scale loss (e.g., loss / 2) Scale loss (e.g., loss / 2)

' v

Compute backward pass Compute backward pass

Sum
gradients

&)

Update model

I Gradient 1 Gradient 2 ‘

\/

Model

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From PyTorch to Accelerator
Ability to Qustomize

O

PyTorch

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From PyTorch to Accelerator
Ability to Qustomize

- AA
N’

Accelerator

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator

Batch 1
accelerator = \ ~ -
Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader): l l

inputs, targets = (batch["input_ids"],
batch["labels"])

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator

Batch 1
accelerator = \ -
Accelerator(gradient_accumulation_steps=2)

oo

for index, batch in enumerate(dataloader): Compute forward pass

inputs, targets = (batch["input_ids"], lLOSS v
batch["labels"])
outputs = model(inputs,
labels=targets)
lLoss = outputs.loss

EFFICIENT Al MODEL TRAINING WITH PYTORCH

o o ®
Gradient accumulation with Accelerator
Batch 1
accelerator = \ o

Accelerator(gradient_accumulation_steps=2) @ O

for index, batch in enumerate(dataloader): Compute forward pass
with accelerator.accumulate(model): lL

0SS
inputs, targets = (batch["input_ids"], !

batch["labels"]) Scale loss (e.g., loss / 2)
outputs = model(inputs, , '

labels=targets)
lLoss = outputs.loss

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator

Batch 1
accelerator = \ -
Accelerator(gradient_accumulation_steps=2)

o8 '

for index, batch in enumerate(dataloader): Compute forward pass

with accelerator.accumulate(model):

. _ . \lLoss }
inputs, targets = (batch["input_ids"],

batch[u'l_abe'l_su]) Scale loss (e.g., IOSS/2)
outputs = model(inputs, i |

Labels=targets) Compute backward pass

lLoss = outputs.loss
accelerator.backward(loss) I(madbnt1

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator

Batch 1 Batch 2
accelerator = \ o .

Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):

Compute forward pass Compute forward pass
with accelerator.accumulate(model):
. _ . ,], Loss ,I,Loss
inputs, targets = (batch["input_ids"],
batch["labels"]) Scale loss (e.g., loss / 2) Scale loss (e.g., loss / 2)

outputs = model(inputs,) }

labels=targets) Compute backward pass Compute backward pass
lLoss = outputs.loss
accelerator.backward(loss) I Gradient1 _Gradient 2 ‘

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator

accelerator = \
Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):

with accelerator.accumulate(model):

inputs, targets = (batch["input_ids"],
batch["labels"])
outputs = model(inputs,
labels=targets)

lLoss = outputs.loss
accelerator.backward(loss)
optimizer.step()
1r_scheduler.step()
optimizer.zero_grad()

Batch 1 Batch 2

Compute forward pass Compute forward pass

,I, Loss ,I, Loss

Scale loss (e.g., loss / 2) Scale loss (e.g., loss / 2)

' v

Compute backward pass Compute backward pass

Sum
gradients

&)

Update model

I Gradient 1 Gradient 2 ‘

\/

Model

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From Accelerator to Trainer
Ability to Qustomize

- AA
N’

Accelerator

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From Accelerator to Trainer
Ability to Qustomize

Trainer

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient accumulation with Trainer

training_args = TrainingArguments(output_dir="./results",
evaluation_strategy="epoch",
gradient_accumulation_steps=2)
trainer = Trainer(model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
compute_metrics=compute_metrics)
trainer.train()

{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03,

{'epoch': 2.0, 'eval_loss': 0.68, 'eval_accuracy': 0.19,

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Let's practice!

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient

checkpointing and
local SGD

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Dennis Lee
Data Engineer

Improving training efficiency

S

N— _
Memory Communication Computational
Efficiency Efficiency Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient checkpointing improves memory efficiency

——

N— _
Memory

Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Local SGD addresses communication efficiency

Communication
Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | A | B

e Example: compute A+B=C

C

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | A | | B

e Example: compute A+B=C o p
o First compute A, B, then compute C

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | A | B

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
o No gradient checkpointing: save A, B

C

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
o No gradient checkpointing: save A, B

o Gradient checkpointing: remove A, B)

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | A | B

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
o No gradient checkpointing: save A, B

o Gradient checkpointing: remove A, B

o Recompute A, B during backward pass | C

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?

e Gradient checkpointing: reduce memory by
selecting which activations to save | B

e Example: compute A+B=C
o First compute A, B, then compute C

o A, B not needed for rest of forward pass

e Should we save or remove A and B?
o No gradient checkpointing: save A, B

o Gradient checkpointing: remove A, B q
o Recompute A, B during backward pass | C

o If B is expensive to recompute, save it

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Trainer and Accelerator
Ability to Qustomize

Accelerator

Trainer

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Trainer and Accelerator
Ability to Qustomize

Trainer

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient checkpointing with Trainer

training_args = TrainingArguments(output_dir="./results",
evaluation_strategy="epoch",
gradient_accumulation_steps=4)

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient checkpointing with Trainer

training_args = TrainingArguments(output_dir="./results",
evaluation_strategy="epoch",
gradient_accumulation_steps=4,
gradient_checkpointing=True)
trainer = Trainer(model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
compute_metrics=compute_metrics)
trainer.train()

{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03, 'eval_f1l': 0.05}

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From Trainer to Accelerator
Ability to Qustomize

AA
o’

Accelerator

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient checkpointing with Accelerator

accelerator = Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):

inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Gradient checkpointing with Accelerator

accelerator = Accelerator(gradient_accumulation_steps=2)

model.gradient_checkpointing_enable()

for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):

inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Local SGD improves communication efficiency

Communication
Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is local SGD?

GPU 1

GPU 1 computes gradients
for num_sgd steps

GPU N computes gradients
for num_sgd steps

lteration 1

e Each device computes gradients in parallel

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is local SGD?

GPU 1
+ GPU 1 computes gradients Repeat until training is finished
- for num_sgd steps
- Driver node synchronizes | "= omomomew
- gradients across devices
GPUN i

GPU N computes gradients
for num_sgd steps

lteration 1

e Each device computes gradients in parallel
e Gradient synchronization: Driver node updates model parameters on each device

e Local SGD: Reduce frequency of gradient synchronization

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Local SGD with Accelerator

for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):

inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Local SGD with Accelerator

from accelerate.local_sgd import LocalSGD

with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,
enabled=True) as local_sqgd:
for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):
inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Local SGD with Accelerator

from accelerate.local_sgd import LocalSGD

with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,
enabled=True) as local_sqgd:
for index, batch in enumerate(dataloader):
with accelerator.accumulate(model):
inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
Loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
local_sgd.step()

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Let's practice!

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Mixed precision
training

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Dennis Lee
Data Engineer

Mixed precision training accelerates computation

Computational
Efficiency

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Faster calculations with less precision

+11.25/x 107t

Sign Mantissa Exponent

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Faster calculations with less precision

+11.25/x 1071

Sign Mantissa Exponent

P32 | s [M[m[M[m[m[M[m[M[m[M[m[M|[m[M[m[M[m[MIM[MIM|m[M|E E E E E E EE

Sign Mantissa Exponent
(1 bit) (23 bits) (8 bits)

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Faster calculations with less precision

+1.25/x 107}

Sign Mantissa Exponent

P32 |s [M[M[mM[M[m[m[M[m[M[M[M[M][mM[M[MIM[M[m[M[M][m[M|m]|E E E E E E E E

Sign Mantissa Exponent
(1 bit) (23 bits) (8 bits)

Fri6 |s [M[M[m[m[m[m[mIm[m[m]E E E E E

Sign Mantissa Exponent
(1 bit) (10 bits) (5 bits)

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Compute forward
pass | - > >
in FP16

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Compute forward
pass —>
in FP16

Compute loss
in FP32

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training

e Underflow: number vanishes to O because it falls below precision

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Compute forward
pass —>
in FP16

Compute loss
in FP32

Scale loss:
loss * scale factor

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Compute forward Compute backward
Compute loss

pass — . > pass - -
in FP16 it in FP16

Scale loss:
loss * scale factor

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Compute forward Compute backward

Compute loss

pass = . > pass >
in FP16 it in FP16
Scale loss: Scale gradients:
loss * scale_factor gradients / scale_factor

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Compute forward Compute backward Update model
Compute loss
pass —> n EP32 > pass > parameters
in FP16 in FP16 in FP32
Scale loss: Scale gradients:
loss * scale factor gradients / scale_factor

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow

EFFICIENT Al MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Compute forward Compute backward Update model
Compute loss
pass —> n EP32 > pass > parameters
n1Fﬁ16 in FP16 in FP32
Scale loss: Scale gradients:
loss * scale factor gradients / scale_factor
Store model
parameters <
in FP16

Legend | FP16 FP32

 Mixed precision training: combine FP16, FP32 computations to speed up training
e Underflow: number vanishes to O because it falls below precision

e Scale loss to prevent underflow

EFFICIENT Al MODEL TRAINING WITH PYTORCH

PyTorch implementation
Ability to Qustomize

O

PyTorch

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Mixed precision training with PyTorch

torch.amp.GradScaler()

scaler

for batch in train_dataloader:

inputs, targets = batch["input_ids"], batch["labels"]

with torch.autocast(device_type="cpu", dtype=torch.floatlé):
outputs = model(inputs, labels=targets)
lLoss = outputs.loss

scaler.scale(loss).backward()

scaler.step(optimizer)

scaler.update()

optimizer.zero_grad()

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From PyTorch to Accelerator
Ability to Qustomize

O

PyTorch

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From PyTorch to Accelerator
Ability to Qustomize

- AA
e’

Accelerator

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Mixed precision training with Accelerator

accelerator = Accelerator(mixed_precision="fpl1l6")

model, optimizer, train_dataloader, lr_scheduler = \
accelerator.prepare(model, optimizer, train_dataloader, 1lr_scheduler)

for batch in train_dataloader:
inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
lLoss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From Accelerator to Trainer
Ability to Qustomize

- AA
e’

Accelerator

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

From Accelerator to Trainer
Ability to Qustomize

Trainer

Ease of Use

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Mixed precision training with Trainer

training_args = TrainingArguments(
output_dir="./results",
evaluatlion_strategy="epoch",
fplé6=True

)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],

eval_dataset=dataset["validation"],

compute_metrics=compute_metrics,

)

trainer.train()

EFFICIENT Al MODEL TRAINING WITH PYTORCH

Let's practice!

EFFICIENT Al MODEL TRAINING WITH PYTORCH

