
Gradient
accumulation

EFF IC IENT A I MODEL TRA IN ING WITH PYTORCH

Dennis Lee
Data Engineer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Distributed training

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Efficient training

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Improving training efficiency

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Improving training efficiency

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Improving training efficiency

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation improves memory efficiency

EFFICIENT AI MODEL TRAINING WITH PYTORCH

The problem with large batch sizes
Large batch sizes: Robust gradient estimates for quicker learning

GPU memory constrains batch sizes

EFFICIENT AI MODEL TRAINING WITH PYTORCH

How does gradient accumulation work?

Gradient accumulation: Sum gradients over
smaller batches

Effectively train the model on a large batch

Update model parameters after summing
gradients

EFFICIENT AI MODEL TRAINING WITH PYTORCH

PyTorch, Accelerator, and Trainer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

PyTorch, Accelerator, and Trainer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

PyTorch, Accelerator, and Trainer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch
for index, batch in enumerate(dataloader):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 inputs, targets = (inputs.to(device),
 targets.to(device))

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch
for index, batch in enumerate(dataloader):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 inputs, targets = (inputs.to(device),
 targets.to(device))
 outputs = model(inputs, labels=targets)
 loss = outputs.loss

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch
for index, batch in enumerate(dataloader):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 inputs, targets = (inputs.to(device),
 targets.to(device))
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 loss = loss / gradient_accumulation_steps

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch
for index, batch in enumerate(dataloader):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 inputs, targets = (inputs.to(device),
 targets.to(device))
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 loss = loss / gradient_accumulation_steps
 loss.backward()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch
for index, batch in enumerate(dataloader):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 inputs, targets = (inputs.to(device),
 targets.to(device))
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 loss = loss / gradient_accumulation_steps
 loss.backward()
 if ((index + 1)
 % gradient_accumulation_steps == 0):

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with PyTorch
for index, batch in enumerate(dataloader):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 inputs, targets = (inputs.to(device),
 targets.to(device))
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 loss = loss / gradient_accumulation_steps
 loss.backward()
 if ((index + 1)
 % gradient_accumulation_steps == 0):
 optimizer.step()
 lr_scheduler.step()
 optimizer.zero_grad()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From PyTorch to Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From PyTorch to Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator
accelerator = \
 Accelerator(gradient_accumulation_steps=2)
for index, batch in enumerate(dataloader):

 inputs, targets = (batch["input_ids"],
 batch["labels"])

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator
accelerator = \
 Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):

 inputs, targets = (batch["input_ids"],
 batch["labels"])
 outputs = model(inputs,
 labels=targets)
 loss = outputs.loss

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator
accelerator = \
 Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 outputs = model(inputs,
 labels=targets)
 loss = outputs.loss

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator
accelerator = \
 Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 outputs = model(inputs,
 labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator
accelerator = \
 Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 outputs = model(inputs,
 labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with Accelerator
accelerator = \
 Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = (batch["input_ids"],
 batch["labels"])
 outputs = model(inputs,
 labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)
 optimizer.step()
 lr_scheduler.step()
 optimizer.zero_grad()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From Accelerator to Trainer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From Accelerator to Trainer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient accumulation with Trainer
training_args = TrainingArguments(output_dir="./results",
 evaluation_strategy="epoch",
 gradient_accumulation_steps=2)
trainer = Trainer(model=model,
 args=training_args,
 train_dataset=dataset["train"],
 eval_dataset=dataset["validation"],
 compute_metrics=compute_metrics)
trainer.train()

{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03, 'eval_f1': 0.05}
{'epoch': 2.0, 'eval_loss': 0.68, 'eval_accuracy': 0.19, 'eval_f1': 0.25}

Let's practice!
EFF IC IENT A I MODEL TRA IN ING WITH PYTORCH

Gradient
checkpointing and

local SGD
EFF IC IENT A I MODEL TRA IN ING WITH PYTORCH

Dennis Lee
Data Engineer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Improving training efficiency

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient checkpointing improves memory efficiency

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Local SGD addresses communication efficiency

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?
Gradient checkpointing: reduce memory by
selecting which activations to save

Example: compute A + B = C

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?
Gradient checkpointing: reduce memory by
selecting which activations to save

Example: compute A + B = C
First compute A, B, then compute C

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?
Gradient checkpointing: reduce memory by
selecting which activations to save

Example: compute A + B = C
First compute A, B, then compute C

A, B not needed for rest of forward pass

Should we save or remove A and B?

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?
Gradient checkpointing: reduce memory by
selecting which activations to save

Example: compute A + B = C
First compute A, B, then compute C

A, B not needed for rest of forward pass

Should we save or remove A and B?
No gradient checkpointing: save A, B

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?
Gradient checkpointing: reduce memory by
selecting which activations to save

Example: compute A + B = C
First compute A, B, then compute C

A, B not needed for rest of forward pass

Should we save or remove A and B?
No gradient checkpointing: save A, B

Gradient checkpointing: remove A, B

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?
Gradient checkpointing: reduce memory by
selecting which activations to save

Example: compute A + B = C
First compute A, B, then compute C

A, B not needed for rest of forward pass

Should we save or remove A and B?
No gradient checkpointing: save A, B

Gradient checkpointing: remove A, B

Recompute A, B during backward pass

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is gradient checkpointing?
Gradient checkpointing: reduce memory by
selecting which activations to save

Example: compute A + B = C
First compute A, B, then compute C

A, B not needed for rest of forward pass

Should we save or remove A and B?
No gradient checkpointing: save A, B

Gradient checkpointing: remove A, B

Recompute A, B during backward pass

If B is expensive to recompute, save it

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Trainer and Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Trainer and Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient checkpointing with Trainer
training_args = TrainingArguments(output_dir="./results",
 evaluation_strategy="epoch",
 gradient_accumulation_steps=4)

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient checkpointing with Trainer
training_args = TrainingArguments(output_dir="./results",
 evaluation_strategy="epoch",
 gradient_accumulation_steps=4,
 gradient_checkpointing=True)
trainer = Trainer(model=model,
 args=training_args,
 train_dataset=dataset["train"],
 eval_dataset=dataset["validation"],
 compute_metrics=compute_metrics)
trainer.train()

{'epoch': 1.0, 'eval_loss': 0.73, 'eval_accuracy': 0.03, 'eval_f1': 0.05}

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From Trainer to Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient checkpointing with Accelerator
accelerator = Accelerator(gradient_accumulation_steps=2)

for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = batch["input_ids"], batch["labels"]
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)
 optimizer.step()
 lr_scheduler.step()
 optimizer.zero_grad()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Gradient checkpointing with Accelerator
accelerator = Accelerator(gradient_accumulation_steps=2)
model.gradient_checkpointing_enable()

for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = batch["input_ids"], batch["labels"]
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)
 optimizer.step()
 lr_scheduler.step()
 optimizer.zero_grad()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Local SGD improves communication efficiency

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is local SGD?

Each device computes gradients in parallel

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is local SGD?

Each device computes gradients in parallel

Gradient synchronization: Driver node updates model parameters on each device

Local SGD: Reduce frequency of gradient synchronization

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Local SGD with Accelerator

for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = batch["input_ids"], batch["labels"]
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)
 optimizer.step()
 lr_scheduler.step()
 optimizer.zero_grad()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Local SGD with Accelerator
from accelerate.local_sgd import LocalSGD

with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,
 enabled=True) as local_sgd:
 for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = batch["input_ids"], batch["labels"]
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)
 optimizer.step()
 lr_scheduler.step()
 optimizer.zero_grad()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Local SGD with Accelerator
from accelerate.local_sgd import LocalSGD

with LocalSGD(accelerator=accelerator, model=model, local_sgd_steps=8,
 enabled=True) as local_sgd:
 for index, batch in enumerate(dataloader):
 with accelerator.accumulate(model):
 inputs, targets = batch["input_ids"], batch["labels"]
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)
 optimizer.step()
 lr_scheduler.step()
 optimizer.zero_grad()
 local_sgd.step()

Let's practice!
EFF IC IENT A I MODEL TRA IN ING WITH PYTORCH

Mixed precision
training

EFF IC IENT A I MODEL TRA IN ING WITH PYTORCH

Dennis Lee
Data Engineer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Mixed precision training accelerates computation

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Faster calculations with less precision

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Faster calculations with less precision

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Faster calculations with less precision

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

Underflow: number vanishes to 0 because it falls below precision

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

Underflow: number vanishes to 0 because it falls below precision

Scale loss to prevent underflow

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

Underflow: number vanishes to 0 because it falls below precision

Scale loss to prevent underflow

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

Underflow: number vanishes to 0 because it falls below precision

Scale loss to prevent underflow

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

Underflow: number vanishes to 0 because it falls below precision

Scale loss to prevent underflow

EFFICIENT AI MODEL TRAINING WITH PYTORCH

What is mixed precision training?

Mixed precision training: combine FP16, FP32 computations to speed up training

Underflow: number vanishes to 0 because it falls below precision

Scale loss to prevent underflow

EFFICIENT AI MODEL TRAINING WITH PYTORCH

PyTorch implementation

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Mixed precision training with PyTorch
scaler = torch.amp.GradScaler()

for batch in train_dataloader:
 inputs, targets = batch["input_ids"], batch["labels"]
 with torch.autocast(device_type="cpu", dtype=torch.float16):
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 scaler.scale(loss).backward()
 scaler.step(optimizer)
 scaler.update()
 optimizer.zero_grad()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From PyTorch to Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From PyTorch to Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Mixed precision training with Accelerator
accelerator = Accelerator(mixed_precision="fp16")

model, optimizer, train_dataloader, lr_scheduler = \
 accelerator.prepare(model, optimizer, train_dataloader, lr_scheduler)

for batch in train_dataloader:
 inputs, targets = batch["input_ids"], batch["labels"]
 outputs = model(inputs, labels=targets)
 loss = outputs.loss
 accelerator.backward(loss)
 optimizer.step()
 optimizer.zero_grad()

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From Accelerator to Trainer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

From Accelerator to Trainer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Mixed precision training with Trainer
training_args = TrainingArguments(
 output_dir="./results",
 evaluation_strategy="epoch",
 fp16=True
)
trainer = Trainer(
 model=model,
 args=training_args,
 train_dataset=dataset["train"],
 eval_dataset=dataset["validation"],
 compute_metrics=compute_metrics,
)
trainer.train()

Let's practice!
EFF IC IENT A I MODEL TRA IN ING WITH PYTORCH

