Utilizing tools in
LangChain

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

O

Jonathan Bennion

Al Engineer & LangChain Contributor

X datacamp

Custom tools to enhance agent capabilities

e Custom tools: user-defined functions for agents to complete tasks

Examples:
1. Custom tools
Define single-function tools

2. StructuredTool
Allows for more complex tool definitions

3. format_tool_to_openai_function
Format custom tools for use with OpenAl language models

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A custom tool example: financial reporting

from langchain.agents import tool
@tool
def financial_report(company_name: str) -> str:

"""Generate a financial report for a company that calculates net income."""

revenue = 1000000
expenses = 500000

net_income = revenue - expenses

report = f"Extremely Basic Financial Report including net income for {company_name}\n"
report += f"Revenue: ${revenue}\n"

report += f"Expenses: ${expenses}\n"

report += f"Net Income: ${net_income}\n"

return report

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using the custom tool

Import libraries
from langchain.agents import tool, AgentType, Tool, initialize_agent
from langchain_openai import OpenAl

Define the previously created tool in a list
tools = [
Tool(
name="FinanceReport",
func=financial_report,
description="Use this for running a financial report for net income.",)]
Define the model and the agent
1lm = OpenAI(temperature=0, openai_api_key=openai_api_key)
agent = initialize_agent(tools,1lm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

Define a question and run the agent
question = "Run a financial report that calculates net income for Hooli"
agent.run(question)

> Entering new AgentExecutor chain...
I need to run a financial report

Action: FinanceReport

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A custom tool example: financial reporting

> Entering new AgentExecutor chain...
I need to run a financial report
Action: FinanceReport
Action Input: Hoolil
Observation: Extremely Basic Financial Report including net income for Hoolil
Revenue: $1000000
Expenses: $500000
Net Income: $500000

Thought: I now know the final answer
Final Answer: The net income for Hooli is $500000.

> Finished chain.

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A StructuredTool example: division

def divisible_by_five(n: int) -> int:
"""Calculate the number of times an input 1s divisible by five."""
n_times = n // 5
return n_times

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using StructuredTool

from langchain.agents import initialize_agent, AgentType
from langchain_openai import OpenAl
from langchain.tools import StructuredTool

factorial_tool = StructuredTool.from_function(calculate_factorial)

1lm = OpenAI(temperature=0, openai_api_key=openai_api_key)

agent = initialize_agent(tools=[factorial_tool], llm=11lm,
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,

verbose=True)

result = factorial _tool.func(n=5)

print(result)

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Tools for OpenAl models

e input_name

e output_name

e functlon_name
e tool_name

e description

financial_report.args

{'company_name': {'title': 'Company Name',6 'type': 'string'}}

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Formatting tools for OpenAl models

from langchain_core.pydantic_v1l import BaseModel, Field

class FinancialReportDescription(BaseModel):

query: str = Field(description='generate a financial report using net income')

@tool(args_schema=FinancialReportDescription)
def financial_report_oai(company_name: str) -> str:

[...]

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Formatting tools for OpenAl models

from langchain.tools import format_tool_to_openai_function

print(format_tool_to_openai_function(financial_report_oai))

{'name': 'financial_report_oai',
'description': 'financial_report_oai(company_name: str) -> str - Generate a financial report
for a company.',

'parameters': {'type': 'object',

'properties': {'query': {'title': 'Query’,
'description': 'generate a financial report using net income',
'type': 'string'}},

'required': ['query']}}

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Let's practice!

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Troubleshooting
methods for
optimization

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

O

Jonathan Bennion

Al Engineer & LangChain Contributor

X datacamp

What are callbacks?

Callbacks: functions or methods called during
execution of a program

e Used for:
o Checking output

o Optimizing

o Troubleshooting

X datacamp DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Callbacks for Al applications

1. Data preprocessing
Model inference stage
Error handling and logging

Resource management

o c DN

User interaction management

X datacamp DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Callback methods

_dnit__ ()
on_agent_action(action, * run_id[, ...]) Run on agent action.
on_agent_finish(finish, * run_id[, ...]) Run on agent end.

on_chain_end(outputs, * run_id[, parent_run_id]) Run when chain ends running.
on_chain_error(error, * run_id[, parent_run_id]) Run when chain errors.
on_chain_start(serialized, inputs, * run_id) Run when chain starts running.
on_chat_model_start(serialized, messages, * ...) Run when a chat model starts running.
on_11lm_end(response, * run_id[, parent_run_id]) Run when LLM ends running.
on_llm_error(error, * run_id[, parent_run_id]) Run when LLM errors.

on_1lm_new_token(token, *[, chunk, ...]) Run on new LLM token.
on_11lm_start(serialized, prompts, * run_id) Run when LLM starts running.
on_retriever_end{documents, * run_id[, ...]) Run when Retriever ends running.
on_retriever_error(error, ¥ run_id[, ...]) Run when Retriever errors.

on_retriever_start(serialized, query, * run_id) Run when Retriever starts running.
on_retry(retry_state, * run_id[, parent_run_id]) Run on a retry event.
on_text(text, * run_id[, parent_run_id]) Run on arbitrary text.
on_tool_end(output, * run_id[, parent_run_id]) Run when tool ends running.
on_tool_error(error, * run_id[, parent_run_id]) Run when tool errors.
on_tool_start(serialized, input_str, * run_id) Run when tool starts running.

! https://python.langchain.com/docs/modules/callbacks/

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A callback example

from langchain import LLMChain, OpenAI, PromptTemplate
from langchain.callbacks.base import BaseCallbackHandler

class CallingItBack(BaseCallbackHandler):
def on_llm_start(self, serialized, prompts, invocation_params, **kwargs):
print(prompts)
print(invocation_params["model_name"])
print(invocation_params["temperature"])

def on_llm_new_token(self, token: str, **kwargs) -> None:
print(repr(token))

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A callback example

1lm = OpenAI(model_name="gpt-3.5-turbo-instruct", streaming=True, openai_api_key=openai_api_key)
prompt_template = "What does {thing} smell like?"

chain = LLMChain(llm=1lm, prompt=PromptTemplate.from_template(prompt_template))

output = chain.run({"thing": "space"}, callbacks=[CallingItBack()])
print(output)

['What does space smell like?']
text-davinci-003

0.7

[...]

'Space’

' does'
' not'

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using the verbose flag to debug complex decisions

from langchain.chat_models import ChatOpenAl
from langchain_core.prompts import ChatPromptTemplate

model = ChatOpenAI(streaming=True, openai_api_key=openai_api_key, temperature=0, verbose=True)

prompt = ChatPromptTemplate.from_template("Answer a question with a strict process and deep analysis: {question}")
chain = prompt | model

response = chain.invoke({"question": "Who is the Walrus?"})
output = response.content
print(output)

To determine who the Walrus is, we need to embark on a strict process of deep analysis. Firstly, we must acknowledge
that the Walrus is a symbolic figqure that gained prominence through the Beatles' song "I Am the Walrus."

This song [...]

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Let's practice!

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Evaluating model
output in LangChain

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

O

Jonathan Bennion

Al Engineer & LangChain Contributor

X datacamp

Benefits of Al evaluation

e Checks accuracy
e |dentifies strengths and weaknesses

e Re-align model output with human intent

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

LangChain evaluation tools

e Built-in evaluation tools
o Common critera, including: relevance and correctness

e Custom evaluation criteria
o Criteria for a particular use case

e Using QAEvalChain
o Configuring the model to choose for best optimization

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Built-in evaluation criteria options

from langchain.evaluation import Criteria
list(Criteria)

[<Criteria.CONCISENESS: 'conciseness'>,
<Criteria.RELEVANCE: 'relevance'>,
<Criteria.CORRECTNESS: 'correctness'>,
<Criteria.COHERENCE: 'coherence'>,
<Criteria.HARMFULNESS: 'harmfulness'>,
<Criteria.MALICIOUSNESS: 'maliciousness'>,
<Criteria.HELPFULNESS: 'helpfulness'>,
<Criteria.CONTROVERSIALITY: 'controversiality'>,
<Criteria.MISOGYNY: 'misogyny'>,
<Criteria.CRIMINALITY: 'criminality'>,
<Criteria.INSENSITIVITY: 'insensitivity'>,
<Criteria.DEPTH: 'depth'>,
<Criteria.CREATIVITY: 'creativity'>,
<Criteria.DETAIL: 'detail'>]

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using built-in evaluation criteria

from langchain.chat_models import ChatOpenAI
from langchain.evaluation import load_evaluator

evaluator = load_evaluator("criteria", criteria="relevance",

1Tlm=ChatOpenAI(openai_api_key=openai_api_key))

eval_result = evaluator.evaluate_strings(prediction="The capital of New York state is Albany",
input="What is 26 + 43?")

print(eval_result)

{'reasoning': '', 'value': 'The submission does not meet the criteria because it is not relevant to the
given input. The submission talks about the capital of New York state, while the input is asking for

the sum of 26 + 43.', 'score': None}

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using custom evaluation criteria

custom_criteria = {"simplicity": "Does the language use brevity?",
"bias": "Does the language stay free of human bias?",
"clarity": "Is the writing easy to understand?",
"truthfulness": "Is the writing honest and factual?"}

evaluator = load_evaluator("criteria", criteria=custom_criteria,
1Tlm=ChatOpenAI(openai_api_key=openai_api_key))

eval_result = evaluator.evaluate_strings(
input="What is the best Italian restaurant in New York City?",
prediction="That is a subjective statement and I cannot answer that.")
print(eval_result)

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using custom evaluation criteria

{'reasoning': 'Step by step reasoning for each criterion:

1. Simplicity: Does the language use brevity?

The submission is a simple and brief statement that directly answers the question without any [...]
2. Bias: Does the language stay free of human bias?

The submission does not display any human bias as it objectively states that the answer to the [...]
3. Clarity: Is the writing easy to understand?

The submission acknowledges the subjectivity of the question and states that it cannot answer it [...]
4. Truthfulness: Is the writing honest and factual?

The submission is honest in acknowledging its inability to answer the subjective question [...]
Conclusion:\nBased on the step-by-step reasoning for each criterion, the submission meets the [...]"',
'value': 'Y',

'score': 1}

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

QAEvalChain

loader = PyPDFLoader('/usr/local/share/datasets/attention_is_all_you_need.pdf')
data = loader.load()
chunk_size = 200
chunk_overlap = 50
splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separators=['."'])
docs = splitter.split_documents(data)

embedding = OpenAIEmbeddings(openai_api_key=openai_api_key)
docstorage = Chroma.from_documents(docs, embedding)

1lm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key)

ga = RetrievalQA.from_chain_type(llm=11lm, chain_type="stuff", retriever=docstorage.as_retriever(),
input_key="question")

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

QAEvalChain

question_set = [

{
"guestion": "What is the primary architecture presented in the document?",
"answer": "The Transformer."
Iy
{
"guestion": "According to the document, 1s the Transformer faster or slower than architectures
based on recurrent or convolutional layers?",
"answer": "The Transformer 1s faster."
Iy
{
"guestion": "Who 1s the primary author of the document?",
"answer": "Ashish Vaswani."
}

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

QAEvalChain

predictions = ga.apply(question_set)
eval_chain = QAEvalChain.from_T1lm(llm)

results = eval_chain.evaluate(
question_set,
predictions,
question_key="question",
prediction_key="result",
answer_key="answer')

print(results)

[{'results': ' CORRECT'}, {'results': ' CORRECT'}, {'results': ' INCORRECT'}]

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Let's practice!

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Wrap-up!

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

O

Jonathan Bennion

Al Engineer & LangChain Contributor

X datacamp

Foundational components of LangChain

[
Open-Source Models —y Closed-Source Models @

Prompts

Parsers and Indexers

Chains and Agents

X datacamp DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Memory, prompting techniques, and RAG

Overview for Retrieval Augmented Generation (RAG)

Prompt
00
"' Answer LLMs
End users > GEN Al APP
h
Ask Searc
— Company

-— Data

Retrieve

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Chains and agents

from langchain_core.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAl

promptl = ChatPromptTemplate.from_template("Generate a random number")
prompt2 = ChatPromptTemplate.from_template("Multiply {number} by 100 and use this as a radius for

calculating the area of a circle")

1lm = ChatOpenAI(openai_api_key=openai_api_key)

chainl = promptl | 1lm

chain2 = prompt2 | 11lm

chainl.invoke({})
chain2.invoke({"number": responsel.content})

responsel

response?

print("Generated number:", responsel.content)
print("Result of multiplication:", response2.content)

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Tools and troubleshooting

1lm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0, openai_api_key=open
model = initialize_agent(tools, 1lm, agent=AgentType.REACT_DOCSTORE, verbose=True)

question = "Sergeant Pepper 1s a name made famous by a band - who was he?"
model.run(question)

> Entering new AgentExecutor chain...

Thought: I need to search Sergeant Pepper and find who he 1is.

Action: Search[Sergeant Pepper]

Observation: Sgt. Pepper's Lonely Hearts Club Band is the eighth studio [...]

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Real-world applications

e Ensures accuracy
e |dentifies strengths and weaknesses

e Differentiate human processes from
automated processes

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

LangChain Hub

WX @ UsecCases v
A ulat . (1 Search for prompts, use cases, models...
t t
EE gent simulations
Agents 53
Wi Autonomous agents 11 Top Favorited TopViewed Top Downloaded Recently Updated
Chatbots 73
;‘.‘? Classification 5 Agents | Interacting with APls | ChatPromptTemplate | meta:llama-2-TOb-chat Try it
andi 17
=] Code understanding homanpfsuperagent
Code writing 19 _) _ _
@ This prompt ads sequential function calling to models other than GPT-0613
Evaluation 21
{x} Prompt + Updated 3 monthsago +) 62 + (o) 29.2k » &, 1.9k + © 11
Extraction 38

Interacting with APls 17

Multi-modal 3 ChatPromptTemplate Summarization = English = openal:gpt-3.5-turbo Try it

QA over cocuments g hardkothari/prompt-maker

Self-checking 8
Convert your small and lazy prompt into a detailed and better prompts with this template.
sSaL 5
o (%} Prompt + Updated 3 monthsago + 7 52 +« (@) 14k + &, 147k » ©
Summarization 59
Tagging 9
<> Type - ChatPromptTemplate Chatbots ~ Agents | QA over documents Self-checking = English Try it

openal:gpt-3.5-turbo openal:gpt-4

ChatPromptTemp... 240

smithing-gold/assumption-checker
StringPromptTem... 183

Assert whether assumptions are made in a user's query and provide follow up questions to debunk their

% Language e claims.

Access the LangChain Hub at: https://smith.langchain.com/hub

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

https://smith.langchain.com/hub

LangChain templates

O langchain-ai / langchain

1.6k

<> Code (%) Issues i Pull requests 396 [Discussions (*) Actions

[l ¥ master ~ langchain / templates /| README.md [

' efriis Update readmes with new cli install (#12847) =&

| Preview | Code Blame 137 lines (91 loc) - 4.71 KB

LangChain Templates

fH Projects

+- 0o n e

Q Type (/] to search p

1 () Security |~ Insights
Q. Go tofile t

6c23771- lastmonth %) History

Raw (O & # ~ =

LangChain Templates are the easiest and fastest way to build a production-ready LLM application. These templates serve as a set of
reference architectures for a wide variety of popular LLM use cases. They are all in a standard format which make it easy to deploy them

with LangServe.

- We will be releasing a hosted version of LangServe for one-click deployments of LangChain applications. Sign up here to get on the

waitlist.

Quick Start

To use, first install the LangChain CLI.
pip install -U langchain-cli
Next, create a new LangChain project:

langchain app new my-app

Access LangChain Templates Quick Start at:

https://github.com/langchain-ai/langchain/blob/master/templates/README.md

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

https://github.com/langchain-ai/langchain/blob/master/templates/README.md

The LangChain ecosystem

\
Lz}a(@in

LangSmith: troubleshooting and evaluating applications

LangServe: deploying applications

LangGraph: multi-agent knowledge graphs

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Let's practice!

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

