
Utilizing tools in
LangChain

DEVELOP ING LLM APPL ICAT IONS WITH LANGCHAIN

Jonathan Bennion
AI Engineer & LangChain Contributor

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Custom tools to enhance agent capabilities
Custom tools: user-defined functions for agents to complete tasks

Examples:

1. Custom tools
Define single-function tools

2. StructuredTool
Allows for more complex tool definitions

3. format_tool_to_openai_function
Format custom tools for use with OpenAI language models

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A custom tool example: financial reporting
from langchain.agents import tool
@tool
def financial_report(company_name: str) -> str:
 """Generate a financial report for a company that calculates net income."""

 revenue = 1000000
 expenses = 500000
 net_income = revenue - expenses

 report = f"Extremely Basic Financial Report including net income for {company_name}\n"
 report += f"Revenue: ${revenue}\n"
 report += f"Expenses: ${expenses}\n"
 report += f"Net Income: ${net_income}\n"

 return report

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using the custom tool
Import libraries
from langchain.agents import tool, AgentType, Tool, initialize_agent
from langchain_openai import OpenAI

Define the previously created tool in a list
tools = [
 Tool(
 name="FinanceReport",
 func=financial_report,
 description="Use this for running a financial report for net income.",)]
Define the model and the agent
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
agent = initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,verbose=True)

Define a question and run the agent
question = "Run a financial report that calculates net income for Hooli"
agent.run(question)

> Entering new AgentExecutor chain...
 I need to run a financial report
Action: FinanceReport

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A custom tool example: financial reporting
> Entering new AgentExecutor chain...
 I need to run a financial report
Action: FinanceReport
Action Input: Hooli
Observation: Extremely Basic Financial Report including net income for Hooli
Revenue: $1000000
Expenses: $500000
Net Income: $500000

Thought: I now know the final answer
Final Answer: The net income for Hooli is $500000.

> Finished chain.

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A StructuredTool example: division
def divisible_by_five(n: int) -> int:
 """Calculate the number of times an input is divisible by five."""
 n_times = n // 5
 return n_times

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using StructuredTool
from langchain.agents import initialize_agent, AgentType
from langchain_openai import OpenAI
from langchain.tools import StructuredTool

factorial_tool = StructuredTool.from_function(calculate_factorial)

llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
agent = initialize_agent(tools=[factorial_tool],llm=llm,
 agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
 verbose=True)

result = factorial_tool.func(n=5)
print(result)

120

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Tools for OpenAI models
input_name

output_name

function_name

tool_name

description

financial_report.args

{'company_name': {'title': 'Company Name', 'type': 'string'}}

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Formatting tools for OpenAI models
from langchain_core.pydantic_v1 import BaseModel, Field

class FinancialReportDescription(BaseModel):
 query: str = Field(description='generate a financial report using net income')

@tool(args_schema=FinancialReportDescription)
def financial_report_oai(company_name: str) -> str:
 [...]

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Formatting tools for OpenAI models
from langchain.tools import format_tool_to_openai_function

print(format_tool_to_openai_function(financial_report_oai))

{'name': 'financial_report_oai',
 'description': 'financial_report_oai(company_name: str) -> str - Generate a financial report
 for a company.',
 'parameters': {'type': 'object',
 'properties': {'query': {'title': 'Query',
 'description': 'generate a financial report using net income',
 'type': 'string'}},
 'required': ['query']}}

Let's practice!
DEVELOP ING LLM APPL ICAT IONS WITH LANGCHAIN

Troubleshooting
methods for
optimization

DEVELOP ING LLM APPL ICAT IONS WITH LANGCHAIN

Jonathan Bennion
AI Engineer & LangChain Contributor

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

What are callbacks?

Callbacks: functions or methods called during
execution of a program

Used for:
Checking output

Optimizing

Troubleshooting

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Callbacks for AI applications

1. Data preprocessing

2. Model inference stage

3. Error handling and logging

4. Resource management

5. User interaction management

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Callback methods

 https://python.langchain.com/docs/modules/callbacks/1

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A callback example
from langchain import LLMChain, OpenAI, PromptTemplate
from langchain.callbacks.base import BaseCallbackHandler

class CallingItBack(BaseCallbackHandler):
 def on_llm_start(self, serialized, prompts, invocation_params, **kwargs):
 print(prompts)
 print(invocation_params["model_name"])
 print(invocation_params["temperature"])

 def on_llm_new_token(self, token: str, **kwargs) -> None:
 print(repr(token))

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

A callback example
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", streaming=True, openai_api_key=openai_api_key)
prompt_template = "What does {thing} smell like?"
chain = LLMChain(llm=llm, prompt=PromptTemplate.from_template(prompt_template))
output = chain.run({"thing": "space"}, callbacks=[CallingItBack()])
print(output)

['What does space smell like?']
text-davinci-003
0.7
[...]
'Space'
' does'
' not'
' have'
' a'

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using the verbose flag to debug complex decisions
from langchain.chat_models import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

model = ChatOpenAI(streaming=True, openai_api_key=openai_api_key, temperature=0, verbose=True)

prompt = ChatPromptTemplate.from_template("Answer a question with a strict process and deep analysis: {question}")
chain = prompt | model

response = chain.invoke({"question": "Who is the Walrus?"})
output = response.content
print(output)

To determine who the Walrus is, we need to embark on a strict process of deep analysis. Firstly, we must acknowledge
that the Walrus is a symbolic figure that gained prominence through the Beatles' song "I Am the Walrus."
This song [...]

Let's practice!
DEVELOP ING LLM APPL ICAT IONS WITH LANGCHAIN

Evaluating model
output in LangChain

DEVELOP ING LLM APPL ICAT IONS WITH LANGCHAIN

Jonathan Bennion
AI Engineer & LangChain Contributor

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Benefits of AI evaluation

Checks accuracy

Identifies strengths and weaknesses

Re-align model output with human intent

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

LangChain evaluation tools

Built-in evaluation tools
Common critera, including: relevance and correctness

Custom evaluation criteria
Criteria for a particular use case

Using QAEvalChain
Configuring the model to choose for best optimization

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Built-in evaluation criteria options
from langchain.evaluation import Criteria
list(Criteria)

[<Criteria.CONCISENESS: 'conciseness'>,
 <Criteria.RELEVANCE: 'relevance'>,
 <Criteria.CORRECTNESS: 'correctness'>,
 <Criteria.COHERENCE: 'coherence'>,
 <Criteria.HARMFULNESS: 'harmfulness'>,
 <Criteria.MALICIOUSNESS: 'maliciousness'>,
 <Criteria.HELPFULNESS: 'helpfulness'>,
 <Criteria.CONTROVERSIALITY: 'controversiality'>,
 <Criteria.MISOGYNY: 'misogyny'>,
 <Criteria.CRIMINALITY: 'criminality'>,
 <Criteria.INSENSITIVITY: 'insensitivity'>,
 <Criteria.DEPTH: 'depth'>,
 <Criteria.CREATIVITY: 'creativity'>,
 <Criteria.DETAIL: 'detail'>]

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using built-in evaluation criteria
from langchain.chat_models import ChatOpenAI
from langchain.evaluation import load_evaluator

evaluator = load_evaluator("criteria", criteria="relevance",
 llm=ChatOpenAI(openai_api_key=openai_api_key))

eval_result = evaluator.evaluate_strings(prediction="The capital of New York state is Albany",
 input="What is 26 + 43?")

print(eval_result)

{'reasoning': '', 'value': 'The submission does not meet the criteria because it is not relevant to the
 given input. The submission talks about the capital of New York state, while the input is asking for
 the sum of 26 + 43.', 'score': None}

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using custom evaluation criteria
custom_criteria = {"simplicity": "Does the language use brevity?",
 "bias": "Does the language stay free of human bias?",
 "clarity": "Is the writing easy to understand?",
 "truthfulness": "Is the writing honest and factual?"}

evaluator = load_evaluator("criteria", criteria=custom_criteria,
 llm=ChatOpenAI(openai_api_key=openai_api_key))

eval_result = evaluator.evaluate_strings(
 input="What is the best Italian restaurant in New York City?",
 prediction="That is a subjective statement and I cannot answer that.")
print(eval_result)

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Using custom evaluation criteria
{'reasoning': 'Step by step reasoning for each criterion:
 1. Simplicity: Does the language use brevity?
 The submission is a simple and brief statement that directly answers the question without any [...]
 2. Bias: Does the language stay free of human bias?
 The submission does not display any human bias as it objectively states that the answer to the [...]
 3. Clarity: Is the writing easy to understand?
 The submission acknowledges the subjectivity of the question and states that it cannot answer it [...]
 4. Truthfulness: Is the writing honest and factual?
 The submission is honest in acknowledging its inability to answer the subjective question [...]
 Conclusion:\nBased on the step-by-step reasoning for each criterion, the submission meets the [...]',
 'value': 'Y',
 'score': 1}

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

QAEvalChain
loader = PyPDFLoader('/usr/local/share/datasets/attention_is_all_you_need.pdf')
data = loader.load()
chunk_size = 200
chunk_overlap = 50
splitter = RecursiveCharacterTextSplitter(
 chunk_size=chunk_size,
 chunk_overlap=chunk_overlap,
 separators=['.'])
docs = splitter.split_documents(data)

embedding = OpenAIEmbeddings(openai_api_key=openai_api_key)
docstorage = Chroma.from_documents(docs, embedding)
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key)

qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=docstorage.as_retriever(),
input_key="question")

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

QAEvalChain
question_set = [
 {
 "question": "What is the primary architecture presented in the document?",
 "answer": "The Transformer."
 },
 {
 "question": "According to the document, is the Transformer faster or slower than architectures
 based on recurrent or convolutional layers?",
 "answer": "The Transformer is faster."
 },
 {
 "question": "Who is the primary author of the document?",
 "answer": "Ashish Vaswani."
 }
]

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

QAEvalChain
predictions = qa.apply(question_set)

eval_chain = QAEvalChain.from_llm(llm)

results = eval_chain.evaluate(
 question_set,
 predictions,
 question_key="question",
 prediction_key="result",
 answer_key='answer')

print(results)

[{'results': ' CORRECT'}, {'results': ' CORRECT'}, {'results': ' INCORRECT'}]

Let's practice!
DEVELOP ING LLM APPL ICAT IONS WITH LANGCHAIN

Wrap-up!
DEVELOP ING LLM APPL ICAT IONS WITH LANGCHAIN

Jonathan Bennion
AI Engineer & LangChain Contributor

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Foundational components of LangChain

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Memory, prompting techniques, and RAG

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Chains and agents
from langchain_core.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI

prompt1 = ChatPromptTemplate.from_template("Generate a random number")
prompt2 = ChatPromptTemplate.from_template("Multiply {number} by 100 and use this as a radius for
calculating the area of a circle")

llm = ChatOpenAI(openai_api_key=openai_api_key)

chain1 = prompt1 | llm
chain2 = prompt2 | llm

response1 = chain1.invoke({})
response2 = chain2.invoke({"number": response1.content})

print("Generated number:", response1.content)
print("Result of multiplication:", response2.content)

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Tools and troubleshooting

> Entering new AgentExecutor chain...
Thought: I need to search Sergeant Pepper and find who he is.
Action: Search[Sergeant Pepper]
Observation: Sgt. Pepper's Lonely Hearts Club Band is the eighth studio [...]

llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0, openai_api_key=open
model = initialize_agent(tools, llm, agent=AgentType.REACT_DOCSTORE, verbose=True)

question = "Sergeant Pepper is a name made famous by a band - who was he?"
model.run(question)

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

Real-world applications

Ensures accuracy

Identifies strengths and weaknesses

Differentiate human processes from
automated processes

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

LangChain Hub

Access the LangChain Hub at: https://smith.langchain.com/hub

https://smith.langchain.com/hub

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

LangChain templates

Access LangChain Templates Quick Start at:
https://github.com/langchain-ai/langchain/blob/master/templates/README.md

https://github.com/langchain-ai/langchain/blob/master/templates/README.md

DEVELOPING LLM APPLICATIONS WITH LANGCHAIN

The LangChain ecosystem

LangSmith: troubleshooting and evaluating applications

LangServe: deploying applications

LangGraph: multi-agent knowledge graphs

Let's practice!
DEVELOP ING LLM APPL ICAT IONS WITH LANGCHAIN

