
Binary and multi-
class image
classification

DEEP LEARNING FOR IMAGES WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

DEEP LEARNING FOR IMAGES WITH PYTORCH

What will we learn with PyTorch?

DEEP LEARNING FOR IMAGES WITH PYTORCH

What will we learn with PyTorch?

DEEP LEARNING FOR IMAGES WITH PYTORCH

What will we learn with PyTorch?

DEEP LEARNING FOR IMAGES WITH PYTORCH

What will we learn with PyTorch?

DEEP LEARNING FOR IMAGES WITH PYTORCH

Prerequisites
Convolutional Neural Networks

Model training in PyTorch

Prerequisite course: Intermediate Deep Learning with PyTorch

https://datacamp.com/courses/intermediate-deep-learning-with-pytorch

DEEP LEARNING FOR IMAGES WITH PYTORCH

PyTorch library

DEEP LEARNING FOR IMAGES WITH PYTORCH

PyTorch library

DEEP LEARNING FOR IMAGES WITH PYTORCH

PyTorch library

DEEP LEARNING FOR IMAGES WITH PYTORCH

PyTorch library

DEEP LEARNING FOR IMAGES WITH PYTORCH

Image classification
 Binary classification

Two distinct classes (cats, dogs)

Activation function: Sigmoid

 Multi-class classification

Multiple classes (boat, train, car)

Activation function: Softmax

Highest probability is the prediction

DEEP LEARNING FOR IMAGES WITH PYTORCH

Convolutional Neural Network model

DEEP LEARNING FOR IMAGES WITH PYTORCH

Convolutional Neural Network model

DEEP LEARNING FOR IMAGES WITH PYTORCH

Convolutional Neural Network model

DEEP LEARNING FOR IMAGES WITH PYTORCH

Convolutional Neural Network model

DEEP LEARNING FOR IMAGES WITH PYTORCH

Convolutional Neural Network model

DEEP LEARNING FOR IMAGES WITH PYTORCH

Datasets: class labels

from torchvision import datasets
import torchvision.transforms as transforms

train_dir = '/data/train'
train_dataset = ImageFolder(root=train_dir,
 transform=transforms.ToTensor())

classes = train_dataset.classes
print(classes)

['cat', 'dog']

print(train_dataset.class_to_idx)

{'cat': 0, 'dog': 1}

DEEP LEARNING FOR IMAGES WITH PYTORCH

Binary image classification: convolutional layer
Conv2d() :

Input: 3 RGB channels (red, green, blue)

Output: 16 channels

Kernel: 3 x 3 matrix

Stride = 1: the kernel moves 1 step

Padding = 1: 1 pixel around the border

ReLU() :
A non-linear activation function

MaxPool2d() :
Kernel: 2×2

Stride: 2 steps

class BinaryCNN(nn.Module):
 def __init__(self):
 super(BinaryCNN, self).__init__()
 self.conv1 = nn.Conv2d(3, 16,
 kernel_size=3, stride=1, padding=1)
 self.relu = nn.ReLU()
 self.pool = nn.MaxPool2d(kernel_size=2,
 stride=2)

 def forward(self, x):

 return x

DEEP LEARNING FOR IMAGES WITH PYTORCH

Binary image classification: fully connected layer
Flatten() :

Tensors flattened into 1-D vector

Linear() :
Input: feature maps x height x width

Output: a single class

Sigmoid() :
[0,1]

class BinaryCNN(nn.Module):
 def __init__(self):
 super(BinaryCNN, self).__init__()
 self.conv1 = nn.Conv2d(3, 16,
 kernel_size=3, stride=1, padding=1)
 self.relu = nn.ReLU()
 self.pool = nn.MaxPool2d(kernel_size=2,
 stride=2)
 self.flatten = nn.Flatten()
 self.fc1 = nn.Linear(16 * 112 * 112, 1)
 self.sigmoid = nn.Sigmoid()
 def forward(self, x):
 x = self.pool(self.relu(self.conv1(x)))
 x = self.fc1(self.flatten(x))
 x = self.sigmoid(x)]
 return x

DEEP LEARNING FOR IMAGES WITH PYTORCH

Multi-class image classification with CNN
class MultiClassCNN(nn.Module):
 def __init__(self, num_classes):
 super(MultiClassCNN, self).__init__()
 ...
 self.fc = nn.Linear(16 * 112 * 112, num_classes)
 self.softmax = nn.Softmax(dim=1)
 def forward(self, x):
 ...
 x = self.softmax(x)
 return x

Let's practice!
DEEP LEARNING FOR IMAGES WITH PYTORCH

Convolutional layers
for images

DEEP LEARNING FOR IMAGES WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

DEEP LEARNING FOR IMAGES WITH PYTORCH

Convolutional layers for images
Apply convolutional layers to image data

Access and add convolutional layers

Create convolutional blocks

Used to adapt models to a specific task

DEEP LEARNING FOR IMAGES WITH PYTORCH

Conv2d: input channels

Grayscale image: in_channels=1

RGB image (red, green, blue): in_channels=3

Transparency includes alpha channel: in_channels=4

from torchvision.transforms import functional
image = PIL.Image.open("dog.png")
num_channels = functional.get_image_num_channels(image)
print("Number of channels: ", num_channels)

Number of channels: 3

DEEP LEARNING FOR IMAGES WITH PYTORCH

Conv2d: kernel

 Input tensor Kernel Output tensor (feature map)

Kernel (colored in green) moves from left to right, top to bottom of the image

 Thevenot, Axel. 2020. A visual and mathematical explanation of the 2D convolution layer.

1

1

DEEP LEARNING FOR IMAGES WITH PYTORCH

Kernel sizes

The most common kernel sizes: 3×3 (Conv2d) and 2×2 (MaxPool2d)

Convolution is a dot product of the kernel (green) and the image region (pink)

The sum of the dot product creates a feature map (blue)

DEEP LEARNING FOR IMAGES WITH PYTORCH

Kernel is a filter
Capture image patterns

DEEP LEARNING FOR IMAGES WITH PYTORCH

Conv2d: output channels

 Input channel Kernel filters Output channels

The number of output channels determines how many filters are applied

Each output channel corresponds to a distinct filter

A higher number of output channels allows the layer to learn more complex features

Output channel numbers are commonly chosen as powers of 2 (16, 32, 64, 128)
It simplifies the process of combining and dividing channels in subsequent layers

DEEP LEARNING FOR IMAGES WITH PYTORCH

Adding convolutional layers
import torch
import torch.nn as nn

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)

conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1)

model = Net()
model.add_module('conv2', conv2)

DEEP LEARNING FOR IMAGES WITH PYTORCH

Accessing convolutional layers
print(model)

Net(
 (conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)

model.conv2

Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

DEEP LEARNING FOR IMAGES WITH PYTORCH

Creating convolutional blocks
Stacking convolutional layers in a block with nn.Sequential()

class BinaryImageClassification(nn.Module):
 def __init__(self):
 super(BinaryImageClassification, self).__init__()
 self.conv_block = nn.Sequential(
 nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),
 nn.ReLU(),
 nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=2, stride=2)
)
 def forward(self, x):
 x = self.conv_block(x)

Let's practice!
DEEP LEARNING FOR IMAGES WITH PYTORCH

Working with pre-
trained models

DEEP LEARNING FOR IMAGES WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

DEEP LEARNING FOR IMAGES WITH PYTORCH

Leveraging pre-trained models
Training models from scratch:

Long process

Requires lots of data

Pre-trained models - models already trained on a task
Directly reusable on a new task

Require adjustment to the new task (transfer learning)

Steps to leveraging pre-trained models:
Saving & loading models locally

Downloading torchvision models

DEEP LEARNING FOR IMAGES WITH PYTORCH

Saving a complete PyTorch model
torch.save()

Model extension: .pt or .pth

Save model weights with .state_dict()

torch.save(model.state_dict(), "BinaryCNN.pth")

DEEP LEARNING FOR IMAGES WITH PYTORCH

Loading PyTorch models
Instantiate a new model

new_model = BinaryCNN()

Load saved parameters

new_model.load_state_dict(torch.load('BinaryCNN.pth'))

DEEP LEARNING FOR IMAGES WITH PYTORCH

Downloading torchvision models
from torchvision.models import (
 resnet18, ResNet18_Weights
)

weights = ResNet18_Weights.DEFAULT
model = resnet18(weights=weights)
transforms = weights.transforms()

Import resnet architecture and weights

Extract weights

Instantiate a model passing it weights

Store required data transforms

DEEP LEARNING FOR IMAGES WITH PYTORCH

Prepare new input images
from PIL import Image

image = Image.open("cat013.jpg")
image_tensor = transform(image)
image_reshaped = image_tensors.unsqueeze(0)

Load image

Transform image

Reshape image

DEEP LEARNING FOR IMAGES WITH PYTORCH

Generating a new prediction
model.eval()

with torch.no_grad():
 pred = model(image_reshaped).squeeze(0)

pred_cls = pred.softmax(0)
cls_id = pred_cls.argmax().item()
cls_name = weights.meta["categories"][cls_id]

print(cls_name)

Egyptian cat

Evaluation mode for inference

Disable gradients

Pass image to model and remove batch
dimension

Apply softmax

Select the highest-probability class and
extract its index

Map class index to label

Print class label

Let's practice
DEEP LEARNING FOR IMAGES WITH PYTORCH

