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Prerequisites
Convolutional Neural Networks

Model training in PyTorch

Prerequisite course: Intermediate Deep Learning with PyTorch

https://datacamp.com/courses/intermediate-deep-learning-with-pytorch
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Image classification
             Binary classification

Two distinct classes (cats, dogs)

Activation function: Sigmoid

             Multi-class classification

Multiple classes (boat, train, car)

Activation function: Softmax

Highest probability is the prediction
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Datasets: class labels

from torchvision import datasets 
import torchvision.transforms as transforms 
  
train_dir = '/data/train' 
train_dataset = ImageFolder(root=train_dir, 
         transform=transforms.ToTensor()) 

classes = train_dataset.classes 
print(classes) 

['cat', 'dog'] 

print(train_dataset.class_to_idx) 

{'cat': 0, 'dog': 1} 
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Binary image classification: convolutional layer
Conv2d() :

Input: 3 RGB channels (red, green, blue)

Output: 16 channels

Kernel: 3 x 3 matrix

Stride = 1: the kernel moves 1 step

Padding = 1: 1 pixel around the border

ReLU() :
A non-linear activation function

MaxPool2d() :
Kernel: 2×2

Stride: 2 steps

class BinaryCNN(nn.Module): 
    def __init__(self): 
        super(BinaryCNN, self).__init__()  
        self.conv1 = nn.Conv2d(3, 16, 
                kernel_size=3, stride=1, padding=1)  
        self.relu = nn.ReLU() 
        self.pool = nn.MaxPool2d(kernel_size=2,  
                     stride=2) 
 
 
  
   def forward(self, x): 
 
 
 
        return x 
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Binary image classification: fully connected layer
Flatten() :

Tensors flattened into 1-D vector

Linear() :
Input: feature maps x height x width

Output: a single class

Sigmoid() :
[0,1]

class BinaryCNN(nn.Module): 
    def __init__(self): 
        super(BinaryCNN, self).__init__() 
        self.conv1 = nn.Conv2d(3, 16, 
                kernel_size=3, stride=1, padding=1) 
        self.relu = nn.ReLU()
        self.pool = nn.MaxPool2d(kernel_size=2,  
                     stride=2)  
        self.flatten = nn.Flatten()  
        self.fc1 = nn.Linear(16 * 112 * 112, 1)  
        self.sigmoid = nn.Sigmoid()  
   def forward(self, x):  
        x = self.pool(self.relu(self.conv1(x))) 
        x = self.fc1(self.flatten(x)) 
        x = self.sigmoid(x)]  
        return x 
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Multi-class image classification with CNN
class MultiClassCNN(nn.Module): 
    def __init__(self, num_classes): 
        super(MultiClassCNN, self).__init__() 
        ...  
        self.fc = nn.Linear(16 * 112 * 112, num_classes)  
        self.softmax = nn.Softmax(dim=1) 
    def forward(self, x): 
        ...  
        x = self.softmax(x)  
        return x 
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Convolutional layers for images
Apply convolutional layers to image data

Access and add convolutional layers

Create convolutional blocks

 

Used to adapt models to a specific task



DEEP LEARNING FOR IMAGES WITH PYTORCH

Conv2d: input channels

Grayscale image: in_channels=1

RGB image (red, green, blue): in_channels=3

Transparency includes alpha channel: in_channels=4

from torchvision.transforms import functional 
image = PIL.Image.open("dog.png") 
num_channels = functional.get_image_num_channels(image) 
print("Number of channels: ", num_channels) 

Number of channels: 3 
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Conv2d: kernel

                                        Input tensor               Kernel       Output tensor (feature map)

Kernel (colored in green) moves from left to right, top to bottom of the image

 Thevenot, Axel. 2020. A visual and mathematical explanation of the 2D convolution layer.

1

1
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Kernel sizes

The most common kernel sizes: 3×3 ( Conv2d ) and 2×2 ( MaxPool2d )

Convolution is a dot product of the kernel (green) and the image region (pink)

The sum of the dot product creates a feature map (blue)
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Kernel is a filter
Capture image patterns
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Conv2d: output channels

                                            Input channel      Kernel filters     Output channels

The number of output channels determines how many filters are applied

Each output channel corresponds to a distinct filter

A higher number of output channels allows the layer to learn more complex features

Output channel numbers are commonly chosen as powers of 2 (16, 32, 64, 128)
It simplifies the process of combining and dividing channels in subsequent layers
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Adding convolutional layers
import torch 
import torch.nn as nn 
 
class Net(nn.Module): 
    def __init__(self): 
        super(Net, self).__init__() 
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1) 

conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1) 

model = Net()  
model.add_module('conv2', conv2) 
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Accessing convolutional layers
print(model) 

Net( 
  (conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 
  (conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 
) 

model.conv2 

Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 
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Creating convolutional blocks
Stacking convolutional layers in a block with nn.Sequential()

class BinaryImageClassification(nn.Module): 
    def __init__(self): 
        super(BinaryImageClassification, self).__init__() 
        self.conv_block = nn.Sequential( 
            nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), 
            nn.ReLU(), 
            nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), 
            nn.ReLU(), 
            nn.MaxPool2d(kernel_size=2, stride=2) 
        )  
     def forward(self, x): 
         x = self.conv_block(x) 
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Leveraging pre-trained models
Training models from scratch:

Long process

Requires lots of data

Pre-trained models - models already trained on a task
Directly reusable on a new task

Require adjustment to the new task (transfer learning)

Steps to leveraging pre-trained models:
Saving & loading models locally

Downloading torchvision  models
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Saving a complete PyTorch model
torch.save()

Model extension: .pt  or .pth

Save model weights with .state_dict()

torch.save(model.state_dict(), "BinaryCNN.pth") 
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Loading PyTorch models
Instantiate a new model

new_model = BinaryCNN() 

Load saved parameters

new_model.load_state_dict(torch.load('BinaryCNN.pth')) 
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Downloading torchvision models
from torchvision.models import ( 
    resnet18, ResNet18_Weights 
) 

 
weights = ResNet18_Weights.DEFAULT  
model = resnet18(weights=weights)  
transforms = weights.transforms() 

Import resnet  architecture and weights

Extract weights

Instantiate a model passing it weights

Store required data transforms
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Prepare new input images
from PIL import Image 
 
image = Image.open("cat013.jpg") 
image_tensor = transform(image)  
image_reshaped = image_tensors.unsqueeze(0) 

 

Load image

Transform image

Reshape image
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Generating a new prediction
model.eval() 
  
with torch.no_grad():  
    pred = model(image_reshaped).squeeze(0) 
  
pred_cls = pred.softmax(0)  
cls_id = pred_cls.argmax().item()  
cls_name = weights.meta["categories"][cls_id]  
 
print(cls_name) 

Egyptian cat 

Evaluation mode for inference

Disable gradients

Pass image to model and remove batch
dimension

Apply softmax

Select the highest-probability class and
extract its index

Map class index to label

Print class label
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