
Basic functions in
Bash

INTRODUCT ION TO BASH SCR IPT ING

Alex Scriven
Data Scientist

INTRODUCTION TO BASH SCRIPTING

Why functions?

If you have used functions in R or Python then you are familiar with these advantages:

1. Functions are reusable

2. Functions allow neat, compartmentalized (modular) code

3. Functions aid sharing code (you only need to know inputs and outputs to use!)

INTRODUCTION TO BASH SCRIPTING

Bash function anatomy
Let's break down the function syntax:

Start by naming the function. This is used
to call it later.

Make sure it is sensible!

Add open and close parentheses after the
function name

Add the code inside curly brackets. You can
use anything you have learned so far
(loops, IF, shell-within-a-shell etc)!

Optionally return something (beware! This
is not as it seems)

A Bash function has the following syntax:

function_name () {
 #function_code
 return #something
}

INTRODUCTION TO BASH SCRIPTING

Alternate Bash function structure
You can also create a function like so:

function function_name {
 #function_code
 return #something
}

The main differences:

Use the word function to denote starting a function build

You can drop the parenthesis on the opening line if you like, though many people keep them
by convention

INTRODUCTION TO BASH SCRIPTING

Calling a Bash function
Calling a Bash function is simply writing the name:

function print_hello () {
 echo "Hello world!"
}
print_hello # here we call the function

Hello world!

INTRODUCTION TO BASH SCRIPTING

Fahrenheit to Celsius Bash function
Let's write a function to convert Fahrenheit to Celsius like you did in a previous lesson, using a
static variable.

temp_f=30
function convert_temp () {
 temp_c=$(echo "scale=2; ($temp_f - 32) * 5 / 9" | bc)
 echo $temp_c
}
convert_temp # call the function

-1.11

Let's practice!
INTRODUCT ION TO BASH SCR IPT ING

Arguments, return
values, and scope
INTRODUCT ION TO BASH SCR IPT ING

Alex Scriven
Data Scientist

INTRODUCTION TO BASH SCRIPTING

Passing arguments into Bash functions
Passing arguments into functions is similar to how you pass arguments into a script. Using the
$1 notation.

You also have access to the special ARGV properties we previously covered:

Each argument can be accessed via the $1 , $2 notation.

$@ and $* give all the arguments in ARGV

$# gives the length (number) of arguments

INTRODUCTION TO BASH SCRIPTING

Passing arguments example
Let's pass some file names as arguments into
a function to demonstrate. We will loop
through them and print them out.

function print_filename {
 echo "The first file was $1"
 for file in $@
 do
 echo "This file has name $file"
 done
}
print_filename "LOTR.txt" "mod.txt" "A.py"

The first file was LOTR.txt
This file has name LOTR.txt
This file has name mod.txt
This file has name A.py

INTRODUCTION TO BASH SCRIPTING

Scope in programming

'Scope' in programming refers to how accessible a variable is.

'Global' means something is accessible anywhere in the program, including inside FOR
loops, IF statements, functions etc.

'Local' means something is only accessible in a certain part of the program.

Why does this matter? If you try and access something that only has local scope - your
program may fail with an error!

INTRODUCTION TO BASH SCRIPTING

Scope in Bash functions
Unlike most programming languages (eg. Python and R), all variables in Bash are global by
default.

function print_filename {
 first_filename=$1
}
print_filename "LOTR.txt" "model.txt"
echo $first_filename

LOTR.txt

Beware global scope may be dangerous as there is more risk of something unintended
happening.

INTRODUCTION TO BASH SCRIPTING

Restricting scope in Bash functions
You can use the local keyword to restrict
variable scope.

function print_filename {
 local first_filename=$1
}
print_filename "LOTR.txt" "model.txt"
echo $first_filename

Q: Why wasn't there an error, just a blank line?

Answer: first_filename got assigned to the
global first ARGV element ($1).

I ran the script with no arguments (
bash script.sh) so this defaults to a blank
element. So be careful!

INTRODUCTION TO BASH SCRIPTING

Return values
We know how to get arguments in - how about getting them out?

The return option in Bash is only meant to determine if the function was a success (0) or
failure (other values 1-255). It is captured in the global variable $?

Our options are:

1. Assign to a global variable

2. echo what we want back (last line in function) and capture using shell-within-a-shell

INTRODUCTION TO BASH SCRIPTING

A return error
Let's see a return error:

function function_2 {
 echlo # An error of 'echo'
}
function_2 # Call the function
echo $? # Print the return value

script.sh: line 2: echlo: command not found
127

What happened?

1. There was an error when we called the
function

The script tried to find 'echlo' as a
program but it didn't exist

2. The return value in $? was 127 (error)

INTRODUCTION TO BASH SCRIPTING

Returning correctly
Let's correctly return a value to be used elsewhere in our script using echo and shell-within-a-
shell capture:

function convert_temp {
 echo $(echo "scale=2; ($1 - 32) * 5 / 9" | bc)
}
converted=$(convert_temp 30)
echo "30F in Celsius is $converted C"

30F in Celsius is -1.11 C

See how we no longer create the intermediary variable?

Let's practice!
INTRODUCT ION TO BASH SCR IPT ING

Scheduling your
scripts with Cron
INTRODUCT ION TO BASH SCR IPT ING

Alex Scriven
Data Scientist

INTRODUCTION TO BASH SCRIPTING

Why schedule scripts?

There are many situations where scheduling scripts can be useful:

1. Regular tasks that need to be done. Perhaps daily, weekly, multiple times per day.
You could set yourself a calendar-reminder, but what if you forget!?

2. Optimal use of resources (running scripts in early hours of morning)

Scheduling scripts with cron is essential to a working knowledge of modern data
infrastructures.

INTRODUCTION TO BASH SCRIPTING

What is cron?

Cron has been part of unix-like systems since the 70's. Humans have been lazy for that long!

The name comes from the Greek word for time, chronos.

It is driven by something called a crontab , which is a file that contains cronjobs , which each
tell crontab what code to run and when.

INTRODUCTION TO BASH SCRIPTING

Crontab - the driver of cronjobs

You can see what schedules (cronjobs) are currently programmed using the following
command:

crontab -l

crontab: no crontab for user

Seems we need to make a schedule (cronjob) then!

INTRODUCTION TO BASH SCRIPTING

Crontab and cronjob structure
This great image from Wikipedia demonstrates how you construct a cronjob inside the
crontab file. You can have many cronjobs , one per line.

There are 5 stars to set, one for each time unit

The default, * means 'every'

INTRODUCTION TO BASH SCRIPTING

Cronjob example
Let's walk through some cronjob examples:

5 1 * * * bash myscript.sh

Minutes star is 5 (5 minutes past the hour).
Hours star is 1 (after 1am). The last three are
* , so every day and month

Overall: run every day at 1�05am.

15 14 * * 7 bash myscript.sh

Minutes star is 15 (15 minutes past the
hour). Hours star is 14 (after 2pm). Next two
are * (Every day of month, every month of
year). Last star is day 7 (on Sundays).

Overall: run at 2�15pm every Sunday.

INTRODUCTION TO BASH SCRIPTING

Advanced cronjob structure
If you wanted to run something multiple times per day or every 'X' time increments, this is also
possible:

Use a comma for specific intervals. For example:
15,30,45 * * * * will run at the 15,30 and 45 minutes mark for whatever hours are
specified by the second star. Here it is every hour, every day etc.

Use a slash for 'every X increment'. For example:
*/15 * * * * runs every 15 minutes. Also for every hour, day etc.

INTRODUCTION TO BASH SCRIPTING

Your first cronjob
Let's schedule a script called extract_data.sh to run every morning at 1.30am. Your steps are
as follows:

1. In terminal type crontab -e to edit your list of cronjobs.
It may ask what editor you want to use. nano is an easy option and a less-steep learning
curve than vi (vim).

2. Create the cronjob:
30 1 * * * extract_data.sh

INTRODUCTION TO BASH SCRIPTING

Your first cron job
3. Exit the editor to save it

If this was using nano (on Mac) you would use ctrl + o then enter then ctrl + x to exit.

You will see a message crontab: installing new crontab

4. Check it is there by running crontab -l .

30 1 * * * extract_data.sh

Nice work!

Let's practice!
INTRODUCT ION TO BASH SCR IPT ING

Thanks and wrap up
INTRODUCT ION TO BASH SCR IPT ING

Alex Scriven
Data Scientist

INTRODUCTION TO BASH SCRIPTING

What we covered (Chapter 1)
Chapter 1 - The basics:

How Bash scripts work with the command-line

The anatomy of a Bash script
Including STDIN, STDERR and STDOUT

INTRODUCTION TO BASH SCRIPTING

Chapter 1 - ARGV
ARGV is the array of all the arguments given
to the program. ARGV is vital knowledge.

Some special properties we learned:
Each argument can be accessed via the
$ notation. ($1 , $2 etc.)

$@ (and $*) return all the arguments in
ARGV

$# gives the length (number) of
arguments

In an example script.sh :

#!/usr/bash
echo $1
echo $@

Call with
bash script.sh FirstArg SecondArg

FirstArg
FirstAg SecondArg

INTRODUCTION TO BASH SCRIPTING

What we covered (Chapter 2)
You learned about creating and using different Bash variables including:

Creating and using both string, numerical and array variables
Arithmetic using expr and (for decimals) bc

Different quotation marks mean different things:
Single (interpret all text literally)

And double (interpret literally except $ and backticks)

INTRODUCTION TO BASH SCRIPTING

Chapter 2 - Shell-within-a-shell
A concept we used again and again (and again!) was the shell-within-a-shell.

Very powerful concept; calling out to a shell in-place within a script and getting the return
value.

sum=$(expr 4 + 5)
echo $sum

9

INTRODUCTION TO BASH SCRIPTING

What we covered (Chapters 3 & 4)

Mastering control of your scripts with:

FOR, WHILE, CASE, IF statements

Creating functions, calling them and pushing data in (arguments) and out (return values)

Scheduling your scripts with cron so you don't need to remember to run another script!

Thank you &
Congratulations!
INTRODUCT ION TO BASH SCR IPT ING

