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INTRODUCTION TO BASH SCRIPTING

Assigning variables
Similar to other languages, you can assign variables with the equals notation.

var1="Moon" 

Then reference with $  notation.

echo $var1 

Moon 



INTRODUCTION TO BASH SCRIPTING

Assigning string variables
Name your variable as you like (something sensible!):

firstname='Cynthia' 
lastname='Liu'  
echo "Hi there" $firstname $lastname 

Hi there Cynthia Liu 

Both variables were returned - nice!



INTRODUCTION TO BASH SCRIPTING

Missing the $ notation
If you miss the $  notation - it isn't a variable!

firstname='Cynthia' 
lastname='Liu' 
echo "Hi there " firstname lastname 

Hi there firstname lastname 



INTRODUCTION TO BASH SCRIPTING

(Not) assigning variables
Bash is not very forgiving about spaces in variable creation. Beware of adding spaces!

var1 = "Moon" 
echo $var1 

script.sh: line 3: var1: command not found 



INTRODUCTION TO BASH SCRIPTING

Single, double, backticks
In Bash, using different quotation marks can mean different things. Both when creating
variables and printing.

Single quotes ( 'sometext' ) = Shell interprets what is between literally

Double quotes ( "sometext" ) = Shell interprets literally except using $  and backticks 

The last way creates a 'shell-within-a-shell', outlined below. Useful for calling command-line
programs. This is done with backticks.

Backticks (`sometext`) = Shell runs the command and captures STDOUT back into a variable



INTRODUCTION TO BASH SCRIPTING

Different variable creation
Let's see the effect of different types of variable creation

now_var='NOW'  
now_var_singlequote='$now_var' 
echo $now_var_singlequote 

$now_var 

now_var_doublequote="$now_var" 
echo $now_var_doublequote 

NOW 



INTRODUCTION TO BASH SCRIPTING

The date program
The Date  program will be useful for demonstrating backticks

Normal output of this program:

date 

Mon  2 Dec 2019 14:07:10 AEDT 



INTRODUCTION TO BASH SCRIPTING

Shell within a shell
Let's use the shell-within-a-shell now:

rightnow_doublequote="The date is `date`." 
echo $rightnow_doublequote 

The date is Mon 2 Dec 2019 14:13:35 AEDT. 

The date program was called, output captured and combined in-line with the echo  call.

We used a shell within a shell!



INTRODUCTION TO BASH SCRIPTING

Parentheses vs backticks
There is an equivalent to backtick notation:

rightnow_doublequote="The date is `date`." 
rightnow_parentheses="The date is $(date)." 
echo $rightnow_doublequote 
echo $rightnow_parentheses 

The date is Mon 2 Dec 2019 14:54:34 AEDT. 
The date is Mon 2 Dec 2019 14:54:34 AEDT. 

Both work the same though using backticks is older. Parentheses is used more in modern
applications. (See http://mywiki.wooledge.org/BashFAQ/082)

http://mywiki.wooledge.org/BashFAQ/082


Let's practice!
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INTRODUCTION TO BASH SCRIPTING

Numbers in other languages
Numbers are not built in natively to the shell like most REPLs (console) such as R and Python

In Python or R you may do:

>>> 1 + 4 

5 

It will return what you want!



INTRODUCTION TO BASH SCRIPTING

Numbers in the shell
 

Numbers are not natively supported:

(In the terminal)

1 + 4 

bash: 1: command not found 



INTRODUCTION TO BASH SCRIPTING

Introducing expr
 

expr  is a useful utility program (just like cat  or grep )

This will now work (in the terminal):

expr 1 + 4 

5 

Nice stuff!



INTRODUCTION TO BASH SCRIPTING

expr limitations
expr  cannot natively handle decimal places:

(In terminal)

expr 1 + 2.5 

expr: not a decimal number: '2.5' 

Fear not though! (There is a solution)



INTRODUCTION TO BASH SCRIPTING

Introducing bc
bc  (basic calculator) is a useful command-line program.

You can enter it in the terminal and perform calculations:



INTRODUCTION TO BASH SCRIPTING

Getting numbers to bc
 

Using bc  without opening the calculator is possible by piping:

echo "5 + 7.5" | bc 

12.5 



INTRODUCTION TO BASH SCRIPTING

bc scale argument
bc  also has a scale  argument for how many decimal places.

echo "10 / 3" | bc 

3 

echo "scale=3; 10 / 3" | bc 

Note the use of ;  to separate 'lines' in terminal

3.333 



INTRODUCTION TO BASH SCRIPTING

Numbers in Bash scripts
We can assign numeric variables just like string variables:

dog_name='Roger' 
dog_age=6  
echo "My dog's name is $dog_name and he is $dog_age years old" 

Beware that dog_age="6"  will work, but makes it a string!

My dog's name is Roger and he is 6 years old 



INTRODUCTION TO BASH SCRIPTING

Double bracket notation
A variant on single bracket variable notation for numeric variables:

expr 5 + 7 
echo $((5 + 7)) 

12 
12 

Beware this method uses expr , not bc  (no decimals!)



INTRODUCTION TO BASH SCRIPTING

Shell within a shell revisited
Remember how we called out to the shell in the previous lesson?

Very useful for numeric variables:

model1=87.65 
model2=89.20  
echo "The total score is $(echo "$model1 + $model2" | bc)"  
echo "The average score is $(echo "($model1 + $model2) / 2" | bc)" 

The total score is 176.85 
The average score is 88 



Let's practice!
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INTRODUCTION TO BASH SCRIPTING

What is an array?
Two types of arrays in Bash:

An array
'Normal' numerical-indexed structure.

Called a 'list' in Python or 'vector' in R.

In Python: my_list = [1,3,2,4]

In R: my_vector <- c(1,3,2,4)



INTRODUCTION TO BASH SCRIPTING

Creating an array in Bash
Creation of a numerical-indexed can be done in two ways in Bash.

1. Declare without adding elements

declare -a my_first_array 

2. Create and add elements at the same time

my_first_array=(1 2 3) 

Remember - no spaces around equals sign!



INTRODUCTION TO BASH SCRIPTING

Be careful of commas!
Commas are not used to separate array elements in Bash:

This is not correct:

my_first_array=(1, 2, 3) 

This is correct:

my_first_array=(1 2 3) 



INTRODUCTION TO BASH SCRIPTING

Important array properties
All array elements can be returned using array[@] . Though do note, Bash requires curly
brackets around the array name when you want to access these properties.

my_array=(1 3 5 2) 
echo ${my_array[@]} 

1 3 5 2 

The length of an array is accessed using #array[@]

echo ${#my_array[@]} 

4 



INTRODUCTION TO BASH SCRIPTING

Manipulating array elements
Accessing array elements using square brackets.

my_first_array=(15 20 300 42) 
echo ${my_first_array[2]} 

300 

Remember: Bash uses zero-indexing for arrays like Python (but unlike R!)



INTRODUCTION TO BASH SCRIPTING

Manipulating array elements
Set array elements using the index notation.

my_first_array=(15 20 300 42 23 2 4 33 54 67 66)  
my_first_array[0]=999  
echo ${my_first_array[0]} 

999 

Remember: don't use the $  when overwriting an index such as $my_first_array[0]=999 ,
as this will not work.



INTRODUCTION TO BASH SCRIPTING

Manipulating array elements
Use the notation array[@]:N:M  to 'slice' out a subset of the array.

Here N  is the starting index and M  is how many elements to return.

my_first_array=(15 20 300 42 23 2 4 33 54 67 66) 
echo ${my_first_array[@]:3:2} 

42 23 



INTRODUCTION TO BASH SCRIPTING

Appending to arrays
Append to an array using array+=(elements) .

For example:

my_array=(300 42 23 2 4 33 54 67 66)  
my_array+=(10) 
echo ${my_array[@]} 

300 42 23 2 4 33 54 67 66 10 



INTRODUCTION TO BASH SCRIPTING

(Not) appending to arrays
What happens if you do not add parentheses around what you want to append? Let's see.

For example:

my_array=(300 42 23 2 4 33 54 67 66) 
my_array+=10 
echo ${my_array[@]} 

30010 42 23 2 4 33 54 67 66 

The string 10  will just be added to the first element. Not what we want!



INTRODUCTION TO BASH SCRIPTING

Associative arrays
An associative array

Similar to a normal array, but with key-value pairs, not numerical indexes

Similar to Python's dictionary or R's list

Note: This is only available in Bash 4 onwards. Some modern macs have old Bash! Check
with bash --version  in terminal

In Python:

my_dict = {'city_name': "New York", 'population': 14000000} 

In R:

my_list = list(city_name = c('New York'), population = c(14000000)) 



INTRODUCTION TO BASH SCRIPTING

Creating an associative array
You can only create an associative array using the declare syntax (and uppercase -A ).

You can either declare first, then add elements or do it all on one line.

Surround 'keys' in square brackets, then associate a value after the equals sign.
You may add multiple elements at once.



INTRODUCTION TO BASH SCRIPTING

Associative array example
Let's make an associative array:

declare -A city_details # Declare first  
city_details=([city_name]="New York" [population]=14000000) # Add elements  
echo ${city_details[city_name]} # Index using key to return a value 

New York 



INTRODUCTION TO BASH SCRIPTING

Creating an associative array
Alternatively, create an associative array and assign in one line

Everything else is the same

declare -A city_details=([city_name]="New York" [population]=14000000) 

Access the 'keys' of an associative array with an !

echo ${!city_details[@]} # Return all the keys 

city_name population 



Let's practice!
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