
Basic variables in
Bash

INTRODUCT ION TO BASH SCR IPT ING

Alex Scriven
Data Scientist

INTRODUCTION TO BASH SCRIPTING

Assigning variables
Similar to other languages, you can assign variables with the equals notation.

var1="Moon"

Then reference with $ notation.

echo $var1

Moon

INTRODUCTION TO BASH SCRIPTING

Assigning string variables
Name your variable as you like (something sensible!):

firstname='Cynthia'
lastname='Liu'
echo "Hi there" $firstname $lastname

Hi there Cynthia Liu

Both variables were returned - nice!

INTRODUCTION TO BASH SCRIPTING

Missing the $ notation
If you miss the $ notation - it isn't a variable!

firstname='Cynthia'
lastname='Liu'
echo "Hi there " firstname lastname

Hi there firstname lastname

INTRODUCTION TO BASH SCRIPTING

(Not) assigning variables
Bash is not very forgiving about spaces in variable creation. Beware of adding spaces!

var1 = "Moon"
echo $var1

script.sh: line 3: var1: command not found

INTRODUCTION TO BASH SCRIPTING

Single, double, backticks
In Bash, using different quotation marks can mean different things. Both when creating
variables and printing.

Single quotes ('sometext') = Shell interprets what is between literally

Double quotes ("sometext") = Shell interprets literally except using $ and backticks

The last way creates a 'shell-within-a-shell', outlined below. Useful for calling command-line
programs. This is done with backticks.

Backticks (`sometext`) = Shell runs the command and captures STDOUT back into a variable

INTRODUCTION TO BASH SCRIPTING

Different variable creation
Let's see the effect of different types of variable creation

now_var='NOW'
now_var_singlequote='$now_var'
echo $now_var_singlequote

$now_var

now_var_doublequote="$now_var"
echo $now_var_doublequote

NOW

INTRODUCTION TO BASH SCRIPTING

The date program
The Date program will be useful for demonstrating backticks

Normal output of this program:

date

Mon 2 Dec 2019 14:07:10 AEDT

INTRODUCTION TO BASH SCRIPTING

Shell within a shell
Let's use the shell-within-a-shell now:

rightnow_doublequote="The date is `date`."
echo $rightnow_doublequote

The date is Mon 2 Dec 2019 14:13:35 AEDT.

The date program was called, output captured and combined in-line with the echo call.

We used a shell within a shell!

INTRODUCTION TO BASH SCRIPTING

Parentheses vs backticks
There is an equivalent to backtick notation:

rightnow_doublequote="The date is `date`."
rightnow_parentheses="The date is $(date)."
echo $rightnow_doublequote
echo $rightnow_parentheses

The date is Mon 2 Dec 2019 14:54:34 AEDT.
The date is Mon 2 Dec 2019 14:54:34 AEDT.

Both work the same though using backticks is older. Parentheses is used more in modern
applications. (See http://mywiki.wooledge.org/BashFAQ/082)

http://mywiki.wooledge.org/BashFAQ/082

Let's practice!
INTRODUCT ION TO BASH SCR IPT ING

Numeric variables in
Bash

INTRODUCT ION TO BASH SCR IPT ING

Alex Scriven
Data Scientist

INTRODUCTION TO BASH SCRIPTING

Numbers in other languages
Numbers are not built in natively to the shell like most REPLs (console) such as R and Python

In Python or R you may do:

>>> 1 + 4

5

It will return what you want!

INTRODUCTION TO BASH SCRIPTING

Numbers in the shell

Numbers are not natively supported:

(In the terminal)

1 + 4

bash: 1: command not found

INTRODUCTION TO BASH SCRIPTING

Introducing expr

expr is a useful utility program (just like cat or grep)

This will now work (in the terminal):

expr 1 + 4

5

Nice stuff!

INTRODUCTION TO BASH SCRIPTING

expr limitations
expr cannot natively handle decimal places:

(In terminal)

expr 1 + 2.5

expr: not a decimal number: '2.5'

Fear not though! (There is a solution)

INTRODUCTION TO BASH SCRIPTING

Introducing bc
bc (basic calculator) is a useful command-line program.

You can enter it in the terminal and perform calculations:

INTRODUCTION TO BASH SCRIPTING

Getting numbers to bc

Using bc without opening the calculator is possible by piping:

echo "5 + 7.5" | bc

12.5

INTRODUCTION TO BASH SCRIPTING

bc scale argument
bc also has a scale argument for how many decimal places.

echo "10 / 3" | bc

3

echo "scale=3; 10 / 3" | bc

Note the use of ; to separate 'lines' in terminal

3.333

INTRODUCTION TO BASH SCRIPTING

Numbers in Bash scripts
We can assign numeric variables just like string variables:

dog_name='Roger'
dog_age=6
echo "My dog's name is $dog_name and he is $dog_age years old"

Beware that dog_age="6" will work, but makes it a string!

My dog's name is Roger and he is 6 years old

INTRODUCTION TO BASH SCRIPTING

Double bracket notation
A variant on single bracket variable notation for numeric variables:

expr 5 + 7
echo $((5 + 7))

12
12

Beware this method uses expr , not bc (no decimals!)

INTRODUCTION TO BASH SCRIPTING

Shell within a shell revisited
Remember how we called out to the shell in the previous lesson?

Very useful for numeric variables:

model1=87.65
model2=89.20
echo "The total score is $(echo "$model1 + $model2" | bc)"
echo "The average score is $(echo "($model1 + $model2) / 2" | bc)"

The total score is 176.85
The average score is 88

Let's practice!
INTRODUCT ION TO BASH SCR IPT ING

Arrays in Bash
INTRODUCT ION TO BASH SCR IPT ING

Alex Scriven
Data Scientist

INTRODUCTION TO BASH SCRIPTING

What is an array?
Two types of arrays in Bash:

An array
'Normal' numerical-indexed structure.

Called a 'list' in Python or 'vector' in R.

In Python: my_list = [1,3,2,4]

In R: my_vector <- c(1,3,2,4)

INTRODUCTION TO BASH SCRIPTING

Creating an array in Bash
Creation of a numerical-indexed can be done in two ways in Bash.

1. Declare without adding elements

declare -a my_first_array

2. Create and add elements at the same time

my_first_array=(1 2 3)

Remember - no spaces around equals sign!

INTRODUCTION TO BASH SCRIPTING

Be careful of commas!
Commas are not used to separate array elements in Bash:

This is not correct:

my_first_array=(1, 2, 3)

This is correct:

my_first_array=(1 2 3)

INTRODUCTION TO BASH SCRIPTING

Important array properties
All array elements can be returned using array[@] . Though do note, Bash requires curly
brackets around the array name when you want to access these properties.

my_array=(1 3 5 2)
echo ${my_array[@]}

1 3 5 2

The length of an array is accessed using #array[@]

echo ${#my_array[@]}

4

INTRODUCTION TO BASH SCRIPTING

Manipulating array elements
Accessing array elements using square brackets.

my_first_array=(15 20 300 42)
echo ${my_first_array[2]}

300

Remember: Bash uses zero-indexing for arrays like Python (but unlike R!)

INTRODUCTION TO BASH SCRIPTING

Manipulating array elements
Set array elements using the index notation.

my_first_array=(15 20 300 42 23 2 4 33 54 67 66)
my_first_array[0]=999
echo ${my_first_array[0]}

999

Remember: don't use the $ when overwriting an index such as $my_first_array[0]=999 ,
as this will not work.

INTRODUCTION TO BASH SCRIPTING

Manipulating array elements
Use the notation array[@]:N:M to 'slice' out a subset of the array.

Here N is the starting index and M is how many elements to return.

my_first_array=(15 20 300 42 23 2 4 33 54 67 66)
echo ${my_first_array[@]:3:2}

42 23

INTRODUCTION TO BASH SCRIPTING

Appending to arrays
Append to an array using array+=(elements) .

For example:

my_array=(300 42 23 2 4 33 54 67 66)
my_array+=(10)
echo ${my_array[@]}

300 42 23 2 4 33 54 67 66 10

INTRODUCTION TO BASH SCRIPTING

(Not) appending to arrays
What happens if you do not add parentheses around what you want to append? Let's see.

For example:

my_array=(300 42 23 2 4 33 54 67 66)
my_array+=10
echo ${my_array[@]}

30010 42 23 2 4 33 54 67 66

The string 10 will just be added to the first element. Not what we want!

INTRODUCTION TO BASH SCRIPTING

Associative arrays
An associative array

Similar to a normal array, but with key-value pairs, not numerical indexes

Similar to Python's dictionary or R's list

Note: This is only available in Bash 4 onwards. Some modern macs have old Bash! Check
with bash --version in terminal

In Python:

my_dict = {'city_name': "New York", 'population': 14000000}

In R:

my_list = list(city_name = c('New York'), population = c(14000000))

INTRODUCTION TO BASH SCRIPTING

Creating an associative array
You can only create an associative array using the declare syntax (and uppercase -A).

You can either declare first, then add elements or do it all on one line.

Surround 'keys' in square brackets, then associate a value after the equals sign.
You may add multiple elements at once.

INTRODUCTION TO BASH SCRIPTING

Associative array example
Let's make an associative array:

declare -A city_details # Declare first
city_details=([city_name]="New York" [population]=14000000) # Add elements
echo ${city_details[city_name]} # Index using key to return a value

New York

INTRODUCTION TO BASH SCRIPTING

Creating an associative array
Alternatively, create an associative array and assign in one line

Everything else is the same

declare -A city_details=([city_name]="New York" [population]=14000000)

Access the 'keys' of an associative array with an !

echo ${!city_details[@]} # Return all the keys

city_name population

Let's practice!
INTRODUCT ION TO BASH SCR IPT ING

