Understanding credit risk

CREDIT RISK MODELING IN PYTHON

Michael Crabtree Data Scientist, Ford Motor Company

What is credit risk?

- The possibility that someone who has borrowed money will not repay it all
- Calculated risk difference between lending someone money and a government bond
- When someone fails to repay a loan, it is said to be in default
- The likelihood that someone will default on a loan is the probability of default (PD)

What is credit risk?

- The possibility that someone who has borrowed money will not repay it all
- Calculated risk difference between lending someone money and a government bond
- When someone fails to repay a loan, it is said to be in default
- The likelihood that someone will default on a loan is the probability of default (PD)

Payment	Payment Date	Loan Status
\$100	Jun 15	Non-Default
\$100	Jul 15	Non-Default
\$O	Aug 15	Default

Expected loss

- The dollar amount the firm loses as a result of loan default
- Three primary components:
 - Probability of Default (PD)
 - Exposure at Default (EAD)
 - Loss Given Default (LGD)

Formula for expected loss:

expected_loss = PD * EAD * LGD

Types of data used

Two Primary types of data used:

- Application data
- Behavioral data

Application	Behavioral	
Interest Rate	Employment Length	
Grade	Historical Default	
Amount	Income	

Data columns

- Mix of behavioral and application
- Contain columns simulating credit bureau data

Column	
Income	
Age	
Home ownership	
Employment length	
Loan intent	
Percent Income	(

Column
Loan grade
Loan amount
Interest rate
Loan status
Historical default
Credit history length

Exploring with cross tables

pd.crosstab(cr_loan['person_home_ownership'], cr_loan['loan_status'], values=cr_loan['loan_int_rate'], aggfunc='mean').round(2)

loan_status 0 1

person_home_ownership

- MORTGAGE 10.06 13.43
 - OTHER 11.53 13.77
 - OWN 10.75 12.24
 - **RENT** 10.78 13.73

Exploring with visuals

plt.scatter(cr_loan['person_income'], cr_loan['loan_int_rate'],c='blue', alpha=0.5) plt.xlabel("Personal Income") plt.ylabel("Loan Interest Rate") plt.show()

Let's practice!

Outliers in Credit Data

CREDIT RISK MODELING IN PYTHON

Michael Crabtree Data Scientist, Ford Motor Company

Data processing

- Prepared data allows models to train faster \bullet
- Often positively impacts model performance

Outliers and performance

Possible causes of outliers:

- Problems with data entry systems (human error)
- Issues with data ingestion tools ullet

Outliers and performance

Possible causes of outliers:

- Problems with data entry systems (human error)
- Issues with data ingestion tools

Feature	Coefficient With Outliers	Coefficient Without Outliers
Interest Rate	0.2	0.01
Employment Length	0.5	0.6
Income	0.6	0.75

Detecting outliers with cross tables

• Use cross tables with aggregate functions

pd.crosstab(cr_loan['person_home_ownership'], cr_loan['loan_status'], values=cr_loan['loan_int_rate'], aggfunc='mean').round(2)

Without Outliers			With Outliers		
Ioan_status 0 1			loan_status		
person_home_ownership				person_home_ownership	
MORTGAGE	10.06	13.43		MORTGAGE	10.06
OTHER	11.53	13.77		OTHER	11.53
OWN	10.75 <mark>(</mark>	12.24	>	OWN	10.75
RENT	10.78	13.73		RENT	10.78

CREDIT RISK MODELING IN PYTHON

1

Detecting outliers visually

Detecting outliers visually

- Histograms \bullet
- Scatter plots

itacamp

Removing outliers

• Use the .drop() method within Pandas

indices = cr_loan[cr_loan['person_emp_length'] >= 60].index cr_loan.drop(indices, inplace=True)

Let's practice!

Risk with missing data in loan data

CREDIT RISK MODELING IN PYTHON

Michael Crabtree Data Scientist, Ford Motor Company

What is missing data?

- NULLs in a row instead of an actual value
- An empty string ''
- Not an entirely empty row
- Can occur in any column in the data

	person_age	person_income	person_home_ownership	person_emp_length	
105	22	12600.0	MORTGAGE	NaN	
222	24	185000.0	MORTGAGE	NaN	
379	24	16800.0	MORTGAGE	NaN	DEBT

CREDIT RISK MODELING IN PYTHON

TCONSOLIDATION

EDUCATION

PERSONAL

loan_intent

Similarities with outliers

- Negatively affect machine learning model performance
- May bias models in unanticipated ways
- May cause errors for some machine learning models

Similarities with outliers

- Negatively affect machine learning model performance
- May bias models in unanticipated ways
- May cause errors for some machine learning models

Missing Data Type	Possible Result
NULL in numeric column	Error
NULL in string column	Error

How to handle missing data

- Generally three ways to handle missing data \bullet
 - Replace values where the data is missing 0
 - Remove the rows containing missing data 0
 - Leave the rows with missing data unchanged 0
- Understanding the data determines the course of action \bullet

How to handle missing data

- Generally three ways to handle missing data \bullet
 - Replace values where the data is missing 0
 - Remove the rows containing missing data 0
 - Leave the rows with missing data unchanged 0
- Understanding the data determines the course of action \bullet

Missing Data	Interpretation	Acti	
NULL in loan_status	Loan recently approved	Remove from p	
NULL in person_age	Age not recorded or disclosed	Replace wit	

CREDIT RISK MODELING IN PYTHON

ith median

prediction data

ion

Finding missing data

- Null values are easily found by using the isnull() function
- Null records can easily be counted with the sum() function
- .any() method checks all columns

null_columns = cr_loan.columns[cr_loan.isnull().any()]
cr_loan[null_columns].isnull().sum()

# Total number of null va	lues per	column
person_home_ownership	25	
person_emp_length	895	
loan_intent	25	
loan_int_rate	3140	
cb_person_default_on_file	15	

Replacing Missing data

Replace the missing data using methods like .fillna() with aggregate functions and \bullet methods

cr_loan['loan_int_rate'].fillna((cr_loan['loan_int_rate'].mean()), inplace = True)

loan_int_rate		loan_int_rate
5.42		5.420000
12.42		12.420000
NaN	>	11.010729
10.74		10.740000
15.27		15.270000

Dropping missing data

- Uses indices to identify records the same as with outliers
- Remove the records entirely using the .drop() method

indices = cr_loan[cr_loan['person_emp_length'].isnull()].index cr_loan.drop(indices, inplace=True)

Let's practice!

